
University of Limerick 
 
 
 

 

 

 

 

Thaw 

Software for the Creation and Manipulation of Static 

and Drone Sounds Using the Phase Vocoder 

 

 

 

 

 

 

 

Cormac Daly B.Sc. 

M.Sc. Masters in Music Technology 

 

Supervised by Mikael Fernström 

 

Submitted to the University of Limerick, September 2006 



 
- ii - 

DECLARATION 

 

Thaw 

Software for the Creation and Manipulation of Static and Drone Sounds 

Using the Phase Vocoder 

 

 

Supervisor: Mikael Fernström 

 

This Thesis is presented in partial fulfillment of the requirements for the degree 

of Master of Science in Music Technology. It is entirely my own work and has 

not been submitted to any other University or higher education institution, or for 

any other academic award in this University. Where use has been made of the 

work of other people it has been fully acknowledged and fully referenced. 

 

 

Signature:___________________________ 

 

Cormac Daly 

 

September 1st, 2006 

 

 

 

 

 

 

 

 

 

 



 
- iii -  

 

 

 

 

 

 

 

 

 

 

 

 

“The drone is the eternal voice of the universe.” 

- Greg Davis 
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ABSTRACT 

 

Thaw: Software for the Creation and Manipulation of Static and Drone 

Sounds Using the Phase Vocoder 

 

Cormac Daly B.Sc. 

 

Audio processing software entitled ‘Thaw’ is presented. The aim for the 
development of Thaw is to allow a computer musician or sound designer to 
create a perceptual ‘snapshot’ of an instant of any sonic source material, and 
allow the manipulation of this snapshot to create drones and other static and 
slowly-moving sounds.  
 
The aesthetic motivation for the development of Thaw is inspired by the 
paradoxical concept of music stopped in time, and endeavours to facilitate the 
practices of drone minimalism and related drone-based musical aesthetics. A 
review of the background to such musical practices, including spectral music 
and more recent drone-based traditions in electronic music, is therefore 
presented. This investigation indicates the need for such a tool as Thaw, in order 
to continue the drone tradition in modern electronic music production 
environments. 
 
Bearing in mind the proposed aesthetic, the unique audio spectrum modification 
capabilities of the phase vocoder are harnessed in order to create the initial sonic 
snapshot, and enable subsequent effects. These effects, including low frequency 
oscillator, pitch shifter, spectral degrader and parametric spectral filter, are 
implemented in order to ‘thaw’ the initial ‘frozen’ sound and allow for the 
creation of the aforementioned drones.  
 
Thaw is successfully implemented in the form of a Virtual Studio Technology 
(VST) effect plug-in, enabling its use within a broad variety of host applications 
and popular computer music production contexts. This thesis documents the 
power of the phase vocoder for the creation of such effects and the subsequent 
design, implementation and refinement of Thaw. As well as examining the 
originality and significance of Thaw, this document concludes by proposing 
future enhancements to the software, and by commenting on the significant 
potential inherent in the phase vocoder for the future exploration of the drone 
aesthetic. 
 
A short composition entitled What Goes Around is also presented. This was 
inspired by the drone aesthetic and its creation was enabled by the functionality 
of Thaw, thus demonstrating the role of the software in allowing the 
development of this tradition in the era of electronic music. 
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Chapter 1    INTRODUCTION AND BACKGROUND 

1.1 Conception 

 

The conception for this Masters project evolved from a fascination with static 

sound and the potential for creation of an illusionary snapshot of sound. 

Peripheral ideas related to this concept were soon developed, refined and 

implemented, and later extended to the exploration of the creation and 

manipulation of static timbres. 

 

Sound, described in a basic physical sense, consists of a wave-like motion. This 

motion exists in its natural form as waves of periodically-varying pressure in a 

medium such as air, or may be represented electronically as continuous streams 

of analogue or digital data. Sound by its nature is therefore dynamic and exists 

only within the context of the time domain. A true ‘snapshot’ of any sound is 

impossible. 

 

Initially, this project sought to implement a piece of software which would 

create the perceptual illusion of such a paradoxical snapshot; that is, a static, 

‘infinitely time-stretched’, unmodulating sound which would retain the timbre, 

pitch and amplitude of the original sound at the point where it is ‘frozen’. 

 

Initial research, however, unearthed an array of pre-existing software products 

which sought to achieve this effect to varying extents and in a variety of 

contexts; a representative selection of these products are discussed in detail in 

Section 3.1 and an analysis of the different digital signal processing techniques 

commonly used to create these techniques is also presented. The initial plan to 

create a simple ‘freezer’, as the effect is commonly known, was therefore 

extended and this resulted in the software development phase of this work 

culminating in the creation of a plug-in, entitled ‘Thaw’, which allow a 

composer to explore the paradox of effectively removing the time dimension 

from the manipulation of a piece of digital audio in ways that allow new and 

unique forms of control over the flow of the music. The title ‘Thaw’ was chosen 
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to represent the nature of the sounds produced by the software; initially ‘frozen’ 

and static, yet capable of becoming ‘thawed’, dissolved, and slowly-moving. 

 

The evolution of the final design for this plug-in was heavily influenced by the 

unique audio manipulation possibilities offered by the phase vocoder. This 

digital signal processing technique, which is discussed in detail in Chapter 4, 

has attracted much interest amongst both musicians and programmers in recent 

years. Therefore, the processes of researching and designing Thaw evolved to 

incorporate an attempt to take advantage of, and more importantly to build 

upon, an open source implementation of the phase vocoder and thereby further 

extend a fascinating vein of research into this tool. As well as creating the initial 

static snapshot of sound, the phase vocoder facilitates the manipulation of the 

resulting audio spectrum in a unique manner, further allowing for exploration of 

the creation of static sounds and drones.  

 

Other conceptual factors which contributed towards the final shape of this work 

included a high degree of initial trial and error, experimentation using several 

diverse software packages such as Pure Data and Csound, and digital signal 

processing techniques other than the phase vocoder, such as looping and 

granular synthesis. The decision to implement the software in the form of a 

plug-in also meant that the product would need to function in real-time; this 

implementation scenario offered another set of constraints and exciting 

possibilities. 

 

Apart from practical concerns, it is important to note that this project began as a 

creative concept; aesthetic concerns were therefore highly influential throughout 

the lifecycle of this work. With this in mind, a discussion on the history of static 

sounds in music, and hence the role of the proposed software in the creation of 

such sounds, is presented in Chapter 2.  

 

A short composition entitled What Goes Around, inspired by the drone music 

tradition and intended to demonstrate the capabilities of the Thaw software, is 

also presented amongst the deliverables of this project. The development of this 

composition is outlined in Chapter 7. 
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1.2 Goals 

 

As outlined above, the project conceptualisation evolved during the course of 

the work and the goals therefore evolved accordingly, especially owing to the 

large and broad selection of pre-existing work which was unearthed. Following 

a period of refinement and experimentation, a number of clear aims have 

emerged which expand upon the initial concept of a ‘freezer’. The fundamental 

goal of creating a static sound remains intact, however, and has been augmented 

to encompass a broader scope of research and creativity. 

 

Therefore, the primary goals of this work are as follows: 

- To develop software which will allow computer musicians and 

composers to create and manipulate high quality static and slowly-

moving sounds. This software will extend the capabilities of similar pre-

existing products by focusing exclusively on the creation of such sounds 

using the phase vocoder technique. 

 

- To exploit the power of the phase vocoder in the implementation of this 

software. The distinctive possibilities inherent in this digital signal 

processing technique have been explored previously in the manipulation of 

musical time and it is widely recognised that the phase vocoder offers a 

wealth of unexplored possibilities for the creation of unusual sounds. A 

degree of experimentation with such possibilities has been a major factor in 

determining the form of the innovations achieved in the first goal above. 

 

- Inspired by Dronology and other such musical tradition, to compose a 

short piece of music which would exploit the functionality of the 

software developed. This piece would also serve to illustrate the added 

creative dimension which the Thaw software makes available to computer 

musicians. 

 

With these goals in mind, it is necessary to ascertain the need for the Thaw 

software. This process begins with an exploration of the creative background of 

the aesthetic of static sound, in Chapter 2. 
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Chapter 2    CREATIVE ORIGINS 

 

The musical or practical need for any software audio manipulation tool needs to 

be explored in order to determine whether anything useful is to be achieved by 

its development. This chapter will, therefore, document the long and fascinating 

thread of musical tradition which explores static and drone-like sounds, thereby 

attempting to demonstrate that the need exists for such a tool to continue this 

tradition in the era of digital music. Several existing acoustic instruments which 

previously attempted to explore the creation of static sounds are also discussed; 

this aims to further demonstrate the available niche and necessity for analogous 

software tools to create similar sounds. 

 

2.1 Static Sound 

 

While a completely static, unmodulating sound is generally quite uninteresting1, 

drone-like sounds are often used in music. Musical drones, which typically 

consist of continuous, static sounds with slowly-moving harmonics or timbres, 

have frequently been incorporated into many and varied types of music. Drones 

may be harmonic or monophonic, or occasionally noise-based, and have served 

as either fundamental components of musical pieces or, perhaps more 

commonly, as peripheral embellishments which are not intended to capture or 

maintain the interest of the listener. A typical peripheral implementation of the 

drone functions as a harmonic centre for a piece of music. Almost universally, 

drone music is rhythmically static or very slow and, instead of drawing attention 

to conventional facets such as rhythm and tonality, allows the listener to focus 

their attention on the microscopic, internal aspects of the individual sounds 

which comprise the musical whole. Because of this, interesting facets of such 

internal aspects of music which would not be apparent in a denser musical 

context may be revealed due to the static nature of the drone; for example, the 

emphasis of slight mistunings caused by the equal temperament tuning system. 

                                                
1 This is often the case with any aspect of music at any level. For example, static or repetitive 
musical ‘form’, at a macroscopic (high) level, is often to blame for causing a piece of music to 
be perceived as boring, as it causes the listener to rapidly lose interest. 
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These, and other dimensions of drone sound, have been summarised as follows:  

 

…sustained intonation that establishes a harmonic center for its 
accompanying elements…the drone might utilize a single note 
repeated indefinitely or, at the opposite extreme, all of the scale’s 
notes spread across numerous octaves. Other key aspects include 
extended duration, modular repetition, and a focus on 
overtones…the trance-inducing drone with its extended tones 
and layered pitches does change but glacially…  

(Textura, 2005). 
 

2.2 Early Traditions 

 

The idea of creating static and slowly-moving sounds is certainly not new and 

has originated in several forms of ancient and ‘world’ music; several 

representative examples of such genres will now be discussed briefly. 

 

The Japanese gagaku tradition originated in 7th century Imperial Japan and 

incorporated drone-creating instruments as well as conventional tempered 

instruments. Gagaku music is still played in Japan to this day and has influenced 

20th century composers including Henry Cowell (Ongaku, 1957) and Benjamin 

Britten (Curlew River, 1964). Hindustani and Indian classical music is also 

frequently accompanied by the tambura, which is capable of playing only 

drones, or by the sitar; such music often features infinitely cyclical rhythmic 

structures known as ‘talas’, which serve to further accommodate the drone 

aesthetic. The indigenous didgeridoo music of Australia is a well-known 

example of drone-based music which continues to be played in the modern era. 

One-note drone-like Gregorian chants which predate polyphonic Western music 

were commonplace in Medieval Europe. Similarly, the Shamanist spiritual 

tradition has used the singing of structurally static songs known as ‘icaros’ in 

ritualistic contexts. 

 

These musical traditions, while somewhat obscure in the modern Western 

world, serve to demonstrate the ubiquitous penetration of drones and static 

sounds in musical tradition. Some of these old or ancient traditions remain alive 



 
- 10 - 

today, and perhaps more importantly, they have served to inspire contemporary 

artists and extend the use of drones into modern Western music. 

 

2.3 Drone Minimalism and Modern Dronology 

 

The practice of incorporating drones into a multitude of musical genres has 

extended into the 20th and 21st centuries and has become known as ‘Dronology’. 

Although the early 20th century works of atonal composer Anton Webern 

feature long tones, such as in the third movement of Five Pieces for Orchestra, 

Op. 10 (1910-1913), any discussion of dronology in modern Western music 

invariably begins with La Monte Young’s pioneering works of the 1960s. 

Young has cited Webern and gagaku in particular as the primary influences for 

his groundbreaking Trio for Strings (1958) (Strickland, 1993, p.125) – he also 

famously claimed that this was the first piece of music to have ever been created 

with nothing but long, sustained sounds2 (Morgan, 1991, p.424).  

 

Although the work of Young and his contemporaries Terry Riley and John Cale 

is known as Minimalism, their music and that of the more prominent 

minimalists Steve Reich and Philip Glass occupy two considerably different 

musical subsets3. Tony Conrad, another early pioneer of dronology, has 

described minimalist music (of the drone variety) as involving “tonality, 

repeating modes, and long pieces with middles but no endings or beginnings” 

(Textura, 2005). 

 

This flavour of minimalism, known as ‘drone minimalism’, first began to 

emerge in the late 1950s and early 1960s from the California-based group 

‘Theater of Eternal Music’ (or ‘Dream Syndicate’). This ensemble, which 

focused on the creation of drone-based music, included Young, Cale, Riley, 

                                                
2 The variety of older music discussed in the previous section would appear to contradict this 
claim. This piece is nonetheless a highly significant work, and is often cited as the work which 
founded minimalism (Strickland, 1993, p. 122).  
3 The minimalist musical genre emerged during the 1950’s. Early minimalism can be roughly 
broken down into two subgenres: the drone variety, practiced by Young, Riley, Cale and their 
contemporaries; and a more tonal, repetitive and structured variety pioneered by Reich and 
Glass. A wider discussion of the latter type of minimalism is outside the scope of this work – 
Edward Strickland’s Minimalism: Origins (1993) provides such a discussion. 
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Conrad and a number of others. The processes used to create these early works 

varied from piece to piece, but typical traits included static instrumentation, 

linear transformations (i.e. a lack of discrete structural sections), pure tuning 

ratios (i.e. scales which are not used in conventional Western music, such as 

‘just intonation’), and non-Western musical influences, such as Indian classical 

music, Indonesian gamelan and other such traditions as discussed in Section 2.1. 

Noteworthy works produced by Young and the Theater of Eternal Music, 

around the same time as Trio for Strings (1958), include Young’s Second 

Dream of the High Tension Line Step-down Transformer (1962) and the Dream 

Syndicate’s The Tortoise Recalling the Drone of the Holy Numbers as they were 

Revealed in the Dreams of the Whirlwind and the Obsidian Gong (1964). 

 

Although the work of the Theater of Eternal Music and other drone minimalists 

is often dismissed as esoteric experimentation, it occupies a far more prominent 

role in music as far as dronology is concerned. This work would inspire further 

composition in the dronology mode in art music circles in the latter half of the 

20th century, and would even go on to inspire mainstream and popular artists 

from the 1960s onwards. 

 

This influence was exemplified by the rock band The Velvet Underground, one 

of whose members was violist and Theater of Eternal Music founder, John Cale; 

they frequently embellished their early works in the mid 1960s with drone 

sounds. Similarly, Kraftwerk – a hugely influential electronic group – featured 

several pieces which were based around static and lengthy instrumental drones 

in their first album released in 1970. Other examples of drone-inspired music to 

emerge during the 1970s included Tangerine Dream’s double prog-rock album 

Zeit (1972), and Brian Eno and Robert Fripp’s collaborative ambient albums No 

Pussyfooting (1973) and Evening Star (1975). Drones have also found their way 

into the music of contemporary electronic artists Aphex Twin (Selected Ambient 

Works Volume II, 1994) and Boards of Canada (Corsair, from the Geogaddi 

album, 2002). The ambient electronic group Minit, founded in 1997, uses 

electro-acoustic and digital processing techniques to create abstract meditative 

soundscapes, such as in the album and title track Now Right Here (2004). 
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Dronology has not only inspired individual artists and composers, but has 

heavily influenced, or even spawned, musical genres. Ambient music, a super-

genre of several flavors of drone music, inherently features static or drone-like 

sounds, and has cross-fertilized and influenced different or derivative genres, 

such as New Age music, ambient techno, and IDM4. ‘Drone Doom’ or ‘Drone 

Metal’ (a sub-genre of doom metal music) marries rock instrumentation with the 

drone aesthetic. This little-known style features down tuned guitars and basses, 

lengthy static musical pieces and large amounts of distortion and reverberation. 

 

2.4 Spectral Music 

 

A phase vocoder will be used to implement the Thaw software – this digital 

signal processing tool, discussed at length in Chapter 4, has served as one of the 

many new means for creating a relatively recent phenomenon known as spectral 

music. A short introduction to spectral music, and its relevance to this work, is 

therefore now presented.  

 

Spectral music emerged in the latter part of the twentieth century, notably in the 

works of Tristan Murail and Gérard Grisey. Spectral music is not limited to one 

particular style or genre; its composition usually draws from the composer’s 

understanding of acoustics, the internal spectral structures of his/her source 

material, and the understanding of how psychoacoustic phenomena may be 

heard and interpreted by the listener. It has been described by Murail as “an 

attitude towards music and composition, rather than a set of techniques” 

(Fineberg, 2000, p.2), and usually involves the use of modern computer 

technologies to understand and exercise a unique and precise form of control 

over these musical spectra. This attitude thereby allows a composer to sculpt 

individual sounds in a manner which allows for composition modes which focus 

on surface texture and new timbres in preference to conventional musical traits 

such as rhythm and tonality. In this manner, spectral music may be seen in some 

                                                
4 IDM - ‘Intelligent Dance Music’, an electronic genre which has particular inspirational value 
in this work due to the widespread trend of using software plug-ins for timbre composition in 
the genre. 
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cases as an aesthetic extension of the core methodologies of the drone 

minimalism genre; and, notwithstanding spectral music’s inability to be tied 

down to any single genre, the works of La Monte Young and his contemporaries 

have been cited as the precursors of spectral music (Anderson, 2000). Fineberg 

makes the following observations which commonly, but not universally, apply 

to spectral music: 

 

The music has made colour into a central element of the musical 
discourse, often elevating it to the level of principal narrative 
thread…orchestral fusion is often a main feature of its surface 
texture, so that individual voices are subsumed in the richness of 
the overall texture and colour…the basic sonic image is often 
sonorous and resonant giving the music a sort of acoustic glow 
that comes from the coherence – in the domain of frequencies – 
of the different constituent pitches…this music simply sounds 
profoundly different than other musics. 

(Fineberg, 2000, p.3). 
 

The relevance of spectral music to the development of Thaw will be further 

explored in Chapter 4, including an examination of the unique attributes of the 

phase vocoder that make it suitable for creating the sort of sonic transformations 

common to spectral music. Hence, the finalized Thaw software will exploit the 

phase vocoder’s possibilities in order to enable its use as a tool for the creation 

of such music. 

 

2.5 Drone Instruments 

 

The means used by musicians to create static and drone sounds are numerous 

and varied. The instruments in question, like all established musical 

instruments, have evolved over centuries and have had their individual designs 

influenced by the requirements of the types of music they aimed to create. 

Several examples of such instruments are now presented: 

 

- The Didgeridoo. This is a wind instrument (or aerophone) of the indigenous 

Australians. Played using circular breathing, it is capable of producing only 

a single pitch. However, interesting and unique harmonics may be created 
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and slowly manipulated by the contortions of the player’s mouth and vocal 

tract. 

 

- The Bagpipes and Uilleann pipes. These wind instruments, native to 

Scotland and Ireland respectively, commonly feature a ‘drone pipe’ which 

accompanies the melody played by the piper. 

 

- The Sitar and Tambura. These stringed Indian instruments incorporate 

‘drone’ strings as well as conventional ‘melody’ strings. 

 

- The Bluegrass Banjo. This instrument is a variation of the banjo; although 

derived from an African instrument it is now primarily used by American 

Bluegrass musicians. The fifth string is typically tuned to the pitch of the 

next string at the fifth fret and is seldom fretted whilst playing. 

 

Although these examples are largely designed to incorporate or specifically 

create drones, a large variety of other instruments have been used in imaginative 

ways to also create drones. These include the violin or viola, such as in La 

Monte Young’s Trio for Strings (1958); muted trumpets, such as in one 

particular interpretation of Young’s Second Dream composition (performed in 

1991); and the Jew’s harp. 

 

As the 20th century progressed, musicians turned increasingly towards new 

electronic methods of sound production and this practice naturally appealed also 

to musicians who wished to create ‘dronal’ music. Although tape loops had 

been used by Musique Concrète5 practitioners as early as the 1950s, in the 

1980s drone artists such as The Loop Orchestra began to use reel-to-reel 

machines and magnetic tape in order to create drone music, which, being “far 

from static, ebbs and flows hypnotically… the loops are simple, organic and 

very human” (Textura, 2005). The e-bow, a small electromagnetic device which 

allows guitarists to create ‘infinite sustain’ with their instruments, is another 

                                                
5 Musique Concrète – the practice of composing music using ‘found sounds’. The birth of this 
movement was facilitated by the introduction of magnetic tape as a medium for sound in the 
1940s. 



 
- 15 - 

example of an electronic technology which has been developed for the purpose 

of creating drones. 

 

As technology has progressed, digital music production techniques have 

eventually succeeded tape-based music and extended the possibilities offered by 

acoustic instruments. The potential means for the electronic production of drone 

music have therefore mushroomed into a seemingly infinite scope of tools and 

techniques. Although composers have turned to software such as Max/MSP and 

similar musical programming environments in order to manually create drone 

music, this research has found very little evidence of previous software 

development with the sole purpose of facilitating this particular musical 

aesthetic. Chapter 3 will now present the ‘State of the Art’ in existing software 

products which, to some extent, explores the creation of static and drone sounds, 

thereby setting the scene for the development of the Thaw software; one of 

goals of which is to address this deficit. 
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Chapter 3    EXISTING WORK 

3.1 Existing Products – The State of the Art 

 

Digital computers have vastly increased the scope of means of expression 

available to composers and musicians who seek to create static or drone-like 

sounds. Software instruments and effects have presented a new sound-producing 

paradigm, and therefore a number of products which achieve the exploration of 

the static and drone sound phenomenon to various extents now exist. These 

products, which have been developed both commercially and academically, 

vary greatly with regard to the type of aesthetic they produce, the digital signal 

processing techniques they utilise in order to create this aesthetic, the way in 

which they allow the user to control the parameters of the sound-manipulation 

algorithms, and the manner in which they take control, or allow the user to take 

control, over the flow of the music. 

 

This section will, therefore, initially present a summary of a review carried out 

of the overall goals and functionality of a representative range of the very large 

array of ‘freezer’ software products currently available to the public. 

Furthermore, this summary will draw attention to unique and/or original 

features of these products, thereby setting the scene for discussion later in the 

thesis on how this large feature set can be enhanced. 

 

3.1.1 GRM Freeze 

 

Freeze is a Virtual Studio Technology (VST)6 standard plug-in created by the 

GRM (Groupe de Recherches Musicale, 2006). It allows a user to visually select 

a piece of streaming audio and create very short loops which may be changed in 

size or temporal location using an X-Y controller. The visual aspect of the 

control is useful as it allows the user to anticipate attacks, decays and other 

                                                
6 A popular plug-in standard developed by Steinberg which is compatible across a wide range of 
host applications. The VST format is described in detail in Section 5.3. 
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aspects of the amplitude in the music, and freeze them as desired. Its unique 

mode of control over the time domain also allows for subtle, continuous timbral 

change. Although the sound produced by the Freeze plug-in is not entirely 

static, as the looping technique used is often audible, this product is nevertheless 

highly popular among users (KVR Forums, 2006) and presents a fascinating 

mode of control over the flow of the sound. 

 

 
Figure 1: The GRM Freeze interface7. 

 

3.1.2 Smartelectronix Ambience 

 

Ambience (Jonsson, 2005) is a freely-available, flexible and high-quality 

reverberation VST plug-in which offers a ‘Hold’ function as a peripheral 

feature. This feature allows the user to instantly and abruptly freeze the output 

of the plug-in, producing an effect which is somewhat similar to the initial static 

sound aspired for by the plug-in which is the subject of this research. Ambience 

fails, however, to offer parameters which intend to facilitate the subsequent 

creation of drones. Furthermore, the ‘Hold’ effect may only be applied to the 

‘wet’ reverberation output and not the ‘dry’ signal, hence reducing its potential 

scope for use. The digital audio manipulation technique used by the author of 

this plug-in to produce the ‘Hold’ effect is unknown. It is suspected that a phase 
                                                
7 Each of these plug-ins requires a host application in order to function – in these screenshots, 
each plug-in is pictured within Tobybear MiniHost (Section 6.5.2Error! Reference source not 
found.). 
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vocoder is used, however, as there is a similarity here with the sound quality of 

known phase vocoder-based plug-ins.  

 

3.1.3 Spectral Monkeyage 

 

Spectral Monkeyage8 is a simple plug-in which allows for the production of 

innovative and abstract sounds through manipulation of the audio in the 

frequency domain. It offers an ‘infinite timestretch’ feature which may be 

introduced instantaneously or gradually via a ‘spectral blurring’ parameter. This 

produces an odd smearing effect that leads seamlessly to the impression of the 

infinite timestretch. Other possible effects created by Spectral Monkeyage 

include drastic pitch scaling, control of individual frequency dynamics, and 

further exotic effects which are not easily described. An undesirable side-effect 

produced by this plug-in, however, is a slight smearing effect on the sound even 

when no effect is being applied. It would appear that Spectral Monkeyage uses a 

phase vocoder technique in order to produce its effects, but this cannot be 

confirmed as the anonymous author of the effect could not be contacted. It is 

certain that Spectral Monkeyage utilises a Fourier Transform, however, as it 

offers the user a choice of window sizes and techniques; this, along with the 

slight audible smearing, would suggest that a phase vocoder is used. 

 

 
Figure 2: The Spectral Monkeyage interface. 

                                                
8 No reference is available for Spectral Monkeyage as it is no longer supported and does not 
have an official website. 



 
- 19 - 

3.1.4 Smartelectronix Sloper 

 

Sloper (Schnetzler, 2006) is another VST plug-in which functions as a ‘stutter-

stretch delay’. The innovative control mode allows a user to create a ‘stuttering’ 

flow through the music by varying a variety of nested loop speeds, loop sizes, 

delay parameters and scan rates; a static or slowly-moving sound may be 

achieved through careful manipulation of these parameters. The plug-in takes a 

tempo parameter, supplied by the host, and the inter-loop scan rate and pseudo 

timestretch effects are dependent on this. 

 

 
Figure 3: The Sloper interface. 

 

3.1.5 Smartelectronix FlitchSplifter 

 

FitchSplifter, by the same author as Sloper, is described as a “midi-playable 

dynamic buffer freezer fx plug-in” (Schnetzler, 2003). It uses a looping 

technique to achieve a somewhat frozen sound. Its innovative interface (Figure 

4) allows for a large degree of control over the flow of the sound. The input 

signal is passed through an envelope detector and gate. If the signal exceeds the 

gate threshold, the input is recorded in a buffer and repeated; the number of 

loops being determined by user-controlled parameters. A host of other 

parameters allow control over wet/dry mix, ‘smoothing’ factor, bit reduction, 

resonance, a 3-mode filter and envelope control. The plug-in also allows the 
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user to ‘play’ the buffered loops using a MIDI keyboard. FlitchSplifter, while 

not aiming to create a wholly static sound or drone aesthetic, takes the 

fascinating approach of trying to combine a ‘freeze’ aesthetic with a ‘glitch9’ 

aesthetic, and the results are unique. 

 

 
Figure 4: The FitchSplifter interface. 

 

3.1.6 CDP Phase Vocoder plug-ins 

 

This untitled suite (Dobson, 2001) consists of three simple experimental VST 

plug-ins: ‘pvtran’, ‘pvexag’ and ‘pvaccu’. The initial work around which these 

effects are based was originally created by Trevor Wishart and his collaborators 

for the Composer’s Desktop Project (Miranda, 2002)10 and later adapted for 

streaming purposes in a VST environment by Richard Dobson (Dobson, 2001). 

Although none of these aims to create a freeze effect, they are included in this 

review as they all utilise the phase vocoder in creative and innovative ways – 

the phase vocoder is the digital signal processing technique used to implement 

the Thaw plug-ins; it is discussed in detail in Chapter 4. pvtran is described as a 

                                                
9 ‘Glitch’ in this context refers to an intentional (albeit seemingly chaotic) musical aesthetic, as 
opposed to the undesired sounds caused by equipment or programming errors, which will be 
mentioned later in this thesis. 
10 The phase vocoder contained within the Composer’s Desktop Project package is a remarkable 
piece of work; it contains over 60 tools for the manipulation of sound using the phase vocoder. 
This is explored in further detail in Section 4.3.5. 



 
- 21 - 

‘simple pitch shifter’, and performs this basic function with excellent sonic 

results. pvexag exaggerates the spectral envelope. pvaccu performs ‘spectral 

accumulation’ with glissando. The latter plug-in, in particular, was of interest 

due to its inherent potential for producing slow-moving or near static sounds.  

 

The further importance of this software’s role in the development of Thaw is 

documented below, in Section 3.1.8. 

 

3.1.7 Further Examples 

 

- Max/MSP groove~ – an object for the modular Max/MSP musical 

programming environment which operates using the same principles as 

GRM Freeze and produces similar results – groove~, however, does not 

offer an effective interface or suitable peripheral controls, as Freeze does. 

 

- Ohmforce Symptohm – a comprehensive synthesis plug-in instrument 

whose features include the ability to create a freeze effect using granular 

synthesis. This is a tedious, manual process however, and it is not the sole 

application of the software. 

 

3.1.8 In Summary 

 

This range of software products utilise a broad range of techniques, interfaces 

and musical aesthetics and share the common attribute of being capable of 

creating static sounds to some extent, but with varying degrees of limitation. 

This is understandable given that these products have not been designed with 

the sole intention of creating and/or manipulating static or drone sounds. The 

notable exception is perhaps GRM Freeze, whose ability to sweep backward 

and forward through a time-domain signal enables it to produce drone-like 

sounds. However, deficiencies in achieving the static/drone aesthetic have 

already been highlighted in Freeze – notably, the aesthetic drawbacks of the 

looping technique and the lack of potential relevant sonic modifications which 

may be performed within the loops themselves. 



 
- 22 - 

 

The examination of the CDP Phase Vocoder plug-ins, however, had a number of 

valuable advantages. Firstly, they demonstrated the unique power of the phase 

vocoder and provided an incentive to further explore this power. Secondly, the 

source code for this plug-in suite is freely available and reproducible under the 

GNU Public Licence (GPL) (Free Software Foundation, 1991). This offers a 

unique opportunity for interested parties to explore the workings of the phase 

vocoder in a VST framework, either at a general, theoretical and functional level 

or at a deeper, mathematical level. The freedom of the GPL also allows for the 

modification and/or redistribution of the software. This source code, based 

around an implementation of the Computer Audio Research Laboratory (CARL) 

phase vocoder (Loy, 2002), was to prove invaluable in founding the 

development of the Thaw software. Its role is discussed in further detail in 

Section 4.3.5. 

 

This review therefore set the scene for a study on how the more desirable 

attributes of these products could be combined, developed and/or refined in 

order to design a piece of software whose primary goal would be to create and 

manipulate high quality static and drone sounds. Section 3.2 will now discuss a 

consideration of which digital signal processing technique(s) might be used in 

order to achieve this goal. 

 

3.2 Potentially Suitable Signal Processing Techniques 

 

As the authentic digital reproduction of a given instant of sound is impossible, 

as explained in the Introduction of this thesis, the final aural output of the 

proposed software product merely needs to be perceptually convincing. 

Although the sound created by existing ‘freezers’ is subjective and best 

described in qualitative terms, it is at least necessary to preserve amplitude, 

pitch and timbre in order to recreate a convincing sound, depending on the 

authenticity and overall aesthetic of the sound that is aspired to. Whereas pitch 

and amplitude are relatively straightforward to measure and reproduce, it is well 

documented that the perception of timbre is highly dependant upon ‘timbre 
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envelope’11 (Howard & Angus, 2001, p.222). For example, research has shown 

that it is difficult for a listener to differentiate between instruments as diverse as 

the piano and the trumpet if the attack and/or decay portions of the sound are 

removed (Howard & Angus, 2001, p.221). This poorly-understood role of the 

time-domain in timbre perception may pose a challenge given the static nature 

of the desired sound. 

  

According to Grey (1977), timbre does not have a one-dimensional subjective 

scale, such as those scales on which loudness and perceived pitch can be 

measured on. Changes in harmonic relationships in the time domain are, 

therefore, vital in preserving timbre. Pollard and Jansson (1982) described a 

‘tristimulus’ method which is an approximate means of tracking the changes in 

the spectral content of sounds over time; in other words, an attempt to quantify 

the temporal dynamics in timbre. As such established means of perceptually 

describing timbre are dependant on time, the implementation of the proposed 

system needs to attempt to perceptually bypass this requirement for dynamic 

change. 

 

The reproduction of pitch is also highly dependent on the time domain – pitch 

cannot be measured instantaneously due to its periodic nature, and 

psychoacoustic experiments have identified that the human auditory system 

must be exposed to a sound for at least 20ms (approx.) in order to successfully 

identify pitch. The chosen signal processing technique must therefore also allow 

for the identification of pitch. 

 

The success of faithfully capturing a snapshot which preserves pitch and timbre 

may lie in the careful choosing of one of a number of suitable audio analysis, 

manipulation and reproduction techniques. The pre-existing examples explored 

in the previous section utilise a variety of such techniques to achieve their goals. 

Each of these, as well as a number of other potential strategies, has advantages 

and drawbacks which will now be discussed. 

 

                                                
11 Timbre envelope - the variation of spectral energy distribution (i.e. frequency components of 
a sound) over time. 
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3.2.1 Looping 

 

This technique, used by GRM Freeze and Max/MSP groove~ as well as many 

other products, creates very short loops within the streaming audio to create the 

freeze effect. While this technique is relatively simple to implement and does 

not require large amounts of computing power to perform its function, its use 

for creating static sounds is not quite convincing. This is due to the fact that, 

depending on how well the technique is applied, the loops may contain ‘rough 

edges’. This causes audible artefacts, and an impression of periodicity which 

may not be desirable in our context. This ‘glitchy’ effect may be successfully 

avoided, however, perhaps by applying a feature akin to ‘windowing’12. 

 

3.2.2 Granular Synthesis 

 

This is another time-domain technique which is not dissimilar in principle to the 

looping technique. Tiny ‘grains’ of sound of specified quantity and duration are 

randomly assembled in the form of either raw, synthesised sounds, or samples 

taken from an input signal and reassembled in a manner which may be 

determined by the user/programmer; the manner in which this is done 

determines the type of resulting sound. Although a number of existing granular 

synthesis-based products which are capable of producing ‘freeze’ sounds exist, 

none of them are dedicated solely towards creating this effect.  

 

3.2.3 Time Domain Harmonic Scaling 

 

Time Domain Harmonic Scaling (TDHS) is another time-domain technique 

commonly used for pitch/time scaling. It is computationally quite fast, as no 

Fourier Transforms are used. Its time-stretching role functions by obtaining the 

fundamental frequency (f0) of a sound, and subsequently overlapping or cross-

fading different sections of the sound in order to create time-stretching. 

                                                
12 A technique used by the phase vocoder which reduces the amplitude at the beginning and end 
of a portion of analysed audio. This technique is described in more detail in Section 4.2.6. 
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However, it only works well with well-pitched monophonic sounds. Also, it 

commonly produces poor quality results and its potential for ‘infinitely’ time-

stretching a piece of audio seems to be unexplored. 

 

3.2.4 Linear Predictive Coding 

 

Linear Predictive Coding (LPC) analyses a sound (usually human speech) and 

creates a data representation of its spectral content. It separates what it perceives 

to be noisy sounds (or residue) from harmonic or pitched sounds and creates 

separate representations of these. Timbre, pitch and rhythm can therefore be 

separated and treated independently; time-stretching and pitch changing are 

possible applications of this feature. It is commonly used for 

compression/resynthesis of telephone signals. Again, however, the resulting 

sound quality is quite low and the potential offered by this technique for 

achieving the desired freezing function is unknown. 

 

3.2.5 Phase Vocoder 

The phase vocoder uses Fast Fourier Transforms to convert audio signals to 

frequency-domain representations where both frequency and phase information 

are preserved. These representations may be manipulated while in the frequency 

domain, and then resynthesised. If the frequency information from the sound is 

interpolated at resynthesis at a different rate than it was during analysis, time-

stretching without pitch change may be achieved. Other unusual effects may be 

achieved by manipulating the signal within the frequency domain.  

  

Like all the other techniques discussed above, the phase vocoder introduces 

audible artefacts (or ‘side effects’)13 during resynthesis, although these effects 

may not be as severe as those produced by the other techniques. They may be 

kept to a minimum by carefully choosing suitable parameters; different phase 

vocoder characteristics (discussed in Chapter 4) suit different types of sounds. 

                                                
13 Usually reverberation and a slight audible ‘smearing’, in the case of the phase vocoder. 



 
- 26 - 

The phase vocoder is quite powerful in its potential and also produces fairly 

consistent results regardless of the type of sound being processed.  

 

3.3 Choosing a Signal Processing Solution 

 

All of the potential solutions discussed above offer various advantages and 

disadvantages. In the worst cases, the use of the time domain harmonic scaling 

or linear predictive coding techniques for the creation of static and drone sounds 

seems to be previously completely unexplored. Apart from their previous uses 

as time stretching and time compressing tools, there appears to be little evidence 

available to support the notion that there is good potential in these techniques 

for producing our desired aesthetic. It follows, therefore, that the use of one of 

these techniques would be unwise. Similarly, the timbres produced by the 

granular synthesis technique may be unpredictable given the hugely varied 

nature of sounds which may be fed into the plug-in. Granular synthesis may 

therefore not be the best option for this project. 

 

The remaining techniques – the phase vocoder and looping methods – appear to 

be the most suitable; at least, they have been used more than any other 

technique in previous implementations of software freezers. The looping 

technique offers the significant advantage of being very straightforward to 

implement. This may allow the programmer to place the looping in a control 

context of high complexity, which could allow for very innovative and hands-on 

means of control (as demonstrated by the Freeze, Sloper and FitchSplifter plug-

ins in particular). Within the actual loops of sound themselves, however, there is 

not a large amount of scope for innovation. Furthermore, unless they are very 

carefully implemented, the loops could give the perceived impression of 

periodicity; this would not conform to the initial ‘static’ aesthetic that the goals 

of this work call for. 

 

The phase vocoder, on the other hand, has the potential to create high fidelity 

static sounds regardless of the type of sound which is being analysed, as 

demonstrated in particular by the Ambience and (as far as can be told) Spectral 
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Monkeyage plug-ins. Perhaps more significantly, the unique 

amplitude/frequency data representation used by the phase vocoder allows for 

unparalleled opportunities for the creation of new and innovative types of audio 

spectral manipulation. The fact that it is less explored than more conventional 

signal processing techniques means that its power may be largely untapped, 

allowing for a great degree of potential innovation in this work. 

 

The phase vocoder does offer disadvantages, of course; it is notoriously difficult 

to implement, especially in real-time systems. This may not be a significant 

problem however, as the coding of a phase vocoder from scratch would be 

outside the scope of this work. It is also highly computationally expensive, due 

to the large number of Fast Fourier Transforms used. This is becoming less of a 

problem, however, due to the relentlessly increasing power of modern 

computers. 

 

Despite these disadvantages, the background research into potentially suitable 

signal processing techniques outlined in this section indicated that the phase 

vocoder was the most promising solution for creating the Thaw software, 

largely owing to its potential for manipulating sounds in new and innovative 

ways that will be outlined in further detail in Section 4.3.3. As a more detailed 

description of the phase vocoder is necessary in order to understand the 

development and workings of the Thaw software, a fuller investigation now 

follows in Chapter 4. This draws on a large body of work exploring the use of 

the phase vocoder which has emerged in recent decades (including Dolson, 

1986; Dobson, 1993, 2001; and Bernsee, 2005). 
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Chapter 4    THE PHASE VOCODER IN DETAIL 

 

Any understanding of the inner workings of the Thaw software requires 

knowledge of the workings of the phase vocoder. However, the implementation 

of this software has not necessitated in-depth investigations or manipulations of 

the inner workings of the phase vocoder or the Fast Fourier Transform. 

Therefore, although a seemingly lengthy description of its workings is presented 

here, the following discussion barely scratches the surface of the extensive 

creative, engineering and mathematical work which has been carried out on the 

phase vocoder to date. Although a lengthy study of the fundamentals of digital 

signal processing and the phase vocoder was undertaken by the author in 

preparation for this work, detailed analyses of the mathematical and physical 

aspects of the nature of the phase vocoder remain outside its scope. 

 

In addition to its relevance to the development of Thaw, it is hoped that the 

scope of the description of the phase vocoder presented here would be of 

particular interest to computer musicians and programmers; while the use of the 

phase vocoder in non-conventional musical applications was largely untapped in 

the past (Dolson, 1986), interest in the technique appears to have grown in 

recent years. 

 

Following an introduction to the history and functionality of the phase vocoder, 

a summary of its role in manipulating and creating music will be discussed in 

this chapter. It will then conclude with a number of examples of previous 

software implementations of the phase vocoder. Sources consulted in preparing 

this presentation of the phase vocoder include Richard Dobson’s The Operation 

of the Phase Vocoder (Dobson, 1993), Stephan M. Bernsee’s The DFT “à Pied” 

(Bernsee, 2005) and Mark Dolson’s The Phase Vocoder: A Tutorial (Dolson, 

1986), as well as many others. 
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4.1 History of the Phase Vocoder 

 

The phase vocoder has had a long and distinguished history as a tool for the 

analysis and manipulation of digital signals in a range of engineering, musical 

and other applications where the frequency-domain analysis of periodic signals 

is necessary. First described in a technical paper by Flanegan and Golden of 

Bell Laboratories (Flanegan & Golden, 1966), the phase vocoder extended 

Homer Dudley’s Channel Vocoder (Dudley, 1939) by describing both frequency 

and phase components of an analysed signal. The target application of this new 

technique was to be the encoding of voice signals for reducing transmission 

bandwidth. Unfortunately, the fact that the analysis data produced by the phase 

vocoder was much greater than the original time-domain signal meant that it 

was unsuitable for this purpose.  

 

However, the advent of powerful digital computers meant that the phase 

vocoder was later adopted as a digital audio processing tool. Many 

contemporary composers have experimented with such software phase 

vocoders, leading to the revelation of radical new possibilities for the 

manipulation of sound. It has become one of the most uniformly reliable and 

flexible techniques for performing time scale modifications (i.e. time stretching 

and compressing) of digital audio. Subsequently, in the last several decades, a 

variety of software implementations of the phase vocoder have been developed. 

Such implementations, and potential future uses of the phase vocoder, are 

presented in detail at the end of this chapter. 

 

4.2 Functionality of the Phase Vocoder 

4.2.1 Overview 

 

The operation of the phase vocoder (Figure 5) occurs in two stages: analysis, 

whereby a time-domain signal is converted to a spectral representation, and 

resynthesis, whereby the reverse process is carried out. The scope for 

manipulation of the analysis data between these two stages is one of the 
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attributes of the phase vocoder that gives it its potential for creating unique 

audio manipulations.  

 

The phase vocoder steps through the time-domain signal to be analysed in 

overlapping steps, or ‘windows’. During the analysis of each window, a bank of 

band pass filters uses Fast Fourier Transforms to create frequency/amplitude 

representations of the spectral content of the window. Frequency information 

may hence be manipulated without affecting the temporal characteristics of the 

signal, and vice-versa, before similar overlapping windows use a bank of 

oscillators to resynthesise the original or modified signal. 

 

 
Figure 5: A simple model of the Phase Vocoder (adapted from Cunningham, 2003). 

 

4.2.2 Filtering 

 

During the analysis stage, a bank of band pass filters analyses a time-domain 

digital signal. This series of filters must accommodate all frequencies which are 

present in the incoming signal and their centre frequencies are therefore spaced 

equally from 0Hz to half the sample rate. The individual band pass frequency 

response must be identical, ensuring that the overall frequency response of the 
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filter bank is flat. This means that no frequency band may be reproduced 

disproportionately and the resynthesised signal may be produced as faithfully as 

possible. The output of these filters consists of pairs of data (or bins) 

representing amplitude and frequency. The manipulation of these bins will be 

discussed presently. 

 

4.2.3 The Fourier Transform 

 

A Fourier Transform is used to implement each digital filter. This method is 

based on principles developed by Jean Baptiste Fourier (1768-1830) which state 

that any periodic waveform, regardless of its origin or degree of complexity, can 

be represented by the sum of a set of harmonically related sinusoidal waves. In 

the case of harmonically related sine waves, each wave is said to be an integer 

multiple of the fundamental frequency. The harmonic structures of common 

waveforms such as square, triangle, saw-tooth, and so on, as well as arbitrary 

complex signals, can therefore be measured with a high degree of precision. The 

principle was originally intended to deal with the conduction of heat in 

materials. 

 

The Fourier Transform detects the magnitudes of the frequencies present using a 

pattern matching method, analogous to the additive synthesis technique of ring 

modulation. When two sine waves are multiplied, the resulting frequencies 

represent the sum and difference of the combined input frequencies. For 

example, if a signal of 440Hz is multiplied by a signal of 460Hz, the output 

consists of a sine wave of 900Hz and a sine wave of 20Hz. If the inputs are 

equal, then the difference is zero and the output consists of a sine wave whose 

frequency is equal to twice the sum of the input. However, it should be noted 

that a DC offset (Figure 6) is introduced – that is, the resultant signal lies above 

the zero line. The magnitude of this offset is directly proportional to the 

amplitudes of the input signals. Therefore, if one of these inputs is at a fixed 

reference level, the amplitude of the other may be determined. The Fourier 

Transform exploits this principle by sweeping through the waveform which is to 

be analysed with a ‘reference’ sine wave of fixed amplitude and gradually 
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sweeping frequency. The resultant, continuously fluctuating amplitude is 

recorded. Any non-zero amplitude in this signal flags the presence of a 

corresponding input harmonic at that frequency and amplitude.  

 

   
Figure 6: DC offset in the wave to the left is zero; the DC offset is positive in the wave to 

the right 
 

4.2.4 The Fast Fourier Transform 

 

As a truly analogue, continuous analysis sweep would be hugely 

computationally expensive and unsuitable for use in a digital system, the Fast 

Fourier Transform (FFT) is used. This streamlined version of the Fourier 

Transform discretely samples the analysis waveform at multiples of its own 

fundamental frequency. As long as this sampling rate is high enough, a good 

spectral analysis of the signal may be reproduced by the FFT. 

 

4.2.5 The Filter Bank 

 

The operation of the FFT is similar to that of a bank of finely tuned band pass 

filters, and is therefore ideal for what is required by the phase vocoder. As the 

overall bandwidth of the filter bank and the individual frequency responses of 

the individual filters are predetermined14 the only factors to be decided in the 

design of the filter bank are the number of filters to use and the frequency 

response of each filter. If a high degree of precision in measuring frequency is 

required, the bandwidth of each filter must be as narrow as possible. 

Correspondingly, the number of filters required to cover the audible range 

becomes larger.  

                                                
14 That is, the bandwidth must correspond to the audible range of frequencies – approximately 
20Hz-22.5kHz – and the individual frequency responses must be uniform. 
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A bank of filters with bandwidth of, for example, 20Hz, would provide adequate 

coverage at 440Hz, where 20Hz corresponds to approximately one semitone. 

Spaced linearly, however, 1000 such filters would be required to cover the 

audible spectrum. At 4kHz and above, this 20Hz resolution is unnecessarily 

high; and at the lower end of the spectrum, 20Hz can cover up to an octave and 

is therefore not high enough. This problem occurs because of the logarithmic 

relationship between frequency and pitch. 

 

In this manner, the FFT is unfortunately not very economical15. Simple periodic 

waveforms may be analysed efficiently enough, as monophonic sounds do not 

contain partials in close proximity to each other. The harmonic content of the 

spectra of arbitrary complex sounds (which comprise the input sounds of the 

phase vocoder the vast majority of the time, at least where musical applications 

are concerned) is much more uncertain, however, and therefore the sideband 

frequency responses which are unavoidable artefacts of the band pass filters 

become more unpredictable and potentially problematic. Input frequencies 

which do not correspond exactly to the centre frequency of any of the band pass 

filters will register in the outputs of peripheral filters; this effect is known as 

‘spectral leakage’ and its effects may be overcome by ‘windowing’ the 

incoming analysis data. 

 

4.2.6 Windowing and Overlapping 

 

Whilst the amplitude of a piece of digital audio may be measured at any given 

instant (i.e. by measuring the amplitude of a single sample), the instantaneous 

measurement of frequency may not be achieved due to its periodic nature. As 

discussed in Section 3.2, psychoacoustic experiments have identified that it 

takes approximately 20ms for the human ear to accurately identify a pitch 

(Howard & Angus, 2001). Therefore a ‘window’ of at least this size is generally 

used to analyse the signal. At a sample rate of 44.1kHz, 20ms corresponds to 

882 samples. As a power-of-two window size is generally more efficient in FFT 
                                                
15 Unless the frequency content of the input signal is known beforehand, in which case the filter 
bank can be ‘tuned’ to perform an optimal analysis of the prominent frequencies in the signal. 
However, this is not the case in most applications. 
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implementations, a minimum window size of 1024 samples is therefore 

commonly used. 

 

 
Figure 7: FFT Windowing 

 

Such a window is considered a slice of sound: a useful analogy is to think of an 

FFT analysis window as a single frame of optical film – a single component in a 

sequence that, when reassembled, will form a continuous moving picture. 

 

The problem with the rectangle-shaped window in Figure 7 is that its edges may 

fall on any sample. The resulting abrupt changes in amplitude may cause 

audible clicking in the resynthesised sound, as illustrated in Figure 8. As the 

FFT considers the windowed analysis frame to be exactly one cycle of a 

periodic waveform, the discontinuity in the cycle caused by the irregular cut off 

by the window edges of the sine wave (in this example) would lead to a 

significantly inaccurate resynthesis with unwanted sideband responses. 

 

 
Figure 8: A rectangular window causes unpredictable changes in amplitudes and hence 

audible glitches in the output sound 
 

The solution to this problem is to ‘squash’ the amplitudes at the edges of the 

analysis window by using a different window shape. This may be thought of as 

a symmetrical amplitude envelope which is applied to the window. A number of 

various types of windowing envelopes are used, including rectangular, 

Blackman, Kaiser, Bartlett and Hamming, and others. Different window types 
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are suited for different purposes16. In terms of reducing the emergence of 

unwanted spectral artefacts, most of these designs are superior in performance 

over the rectangular window. 

 

In Figure 9, a brief graphical comparison of spectral analyses of the same time 

domain signal (top) using several different window types is presented17. In the 

spectral analyses, the amplitude of the signal is represented on the vertical axis, 

and frequency on the horizontal. In each analysis, a peak is produced at 440Hz; 

however, it may be observed that the Rectangular window shape produces far 

more sideband responses than any other window: 

 

Time-domain representation of 440Hz Signal: 

 
 

Spectral analyses of the signal: 

  
Rectangular    Triangular 

 

  
Blackman     Blackman-Harris 

                                                
16 The Thaw software uses a Hanning window by default, partially due to its suitability for 
analysing different types of sound and partially due to the limitations of the CARL phase 
vocoder which was used. 
17 These spectral analyses of a 440Hz sine wave at -5dB were generated in Sony Sound Forge 
using a phase vocoder of window size 1024 and overlap of 75%. 
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Hamming     Hanning 

Figure 9: A comparison of window performance in artefact reduction. 
  

 

Another factor to be determined in the implementation of the phase vocoder is 

the overlap factor: in order to reduce the trade-off between frequency resolution 

and time resolution when determining the window length, the successive 

windows in the FFT analysis are overlapped. For example, for a window size of 

1024 samples, successive FFTs may be applied to windows starting at 0, 64, 

128, 192 samples, and so on. The analysis rate is therefore multiplied eightfold, 

leading to a much greater frequency and time resolutions and, of course, 

increased computational demands. 

 

4.2.7 Phase 

 

If the relative phases of the different amplitude/frequency bins are not known, 

the reconstruction of the overlapping windows during the resynthesis may 

produce undesirable clicks and glitches, or in the worst case, may bear very 

little resemblance to the original signal. If the phase vocoder is simply 

reproducing exactly what it has analysed, this is not an issue as it already has all 

the information it needs. However, a straightforward analysis-resynthesis is 

somewhat musically pointless – if the spectral data or rate of resynthesis is 

modified, as it usually is in musical applications of the phase vocoder, then the 

phase vocoder needs to supply additional phase information.  

 

The phase of a signal relates to the ‘start point’ in the cycles of the waves 

describing its frequency components; one cycle, or 360°, is equivalent to a 

single wavelength. A sine wave and cosine wave, for example, begin one 



 
- 37 - 

quarter of a cycle (or 90°) apart – the sine wave is considered the ‘imaginary’ 

part of a signal and the cosine represents the ‘real’ part. A mathematical 

complex number stores each part. Plotted on an X-Y graph, the real and 

imaginary parts may be measured from the origin in terms of amplitude 

(distance) and phase (angle). This ‘polar’ representation is preserved by the 

phase vocoder and is central to the operation of the FFT and inverse FFT 

(iFFT). 

 

    
Figure 10: Single cycles (360°) of a sine wave, left, and cosine wave, right. The signals are 

90° out of phase. 
 

4.3 The Phase Vocoder’s Role in Digital Music 

Once the processes which have been described above are complete, the phase 

vocoder has all the information it needs to perform a resynthesis. It is at this 

point that the musical uses of the technique become apparent and the phase 

vocoder therefore becomes much more interesting to the computer musician 

(Laroche & Dolson, 1999).  

 

The most common use of the phase vocoder in musical applications to date has 

been the enablement of the independent manipulation of either the temporal 

characteristics or pitch characteristics of a sound. The methods used to achieve 

these utilitarian effects are now described briefly.   

 

4.3.1 Time Scaling 

 

Resynthesis, the final phase of the operation of the phase vocoder, is 

subsequently carried out by a sequence of overlapping windows; within each 

window a bank of oscillators produces the specified frequency components at 
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the correct amplitudes. Time-domain scaling may be achieved by simply 

changing the rate of overlap between these successive windows. For example, if 

the resynthesis windows are interpolated at a faster rate than the rate at which 

the analysis windows were overlapped, time compression is achieved. The 

frequency/amplitude/phase information describing the original signal is left 

untouched18 and the time-stretched or compressed reconstructed wave therefore 

retains most of these original characteristics. 

 

4.3.2 Pitch Shifting 

 

Pitch shifting of a signal upon resynthesis is simply an extension of the time 

scaling technique. After the overlap rate has been changed, the output may be 

resampled to a specified rate, thereby restoring the time domain factor but 

changing the pitch without further degradation of the signal. Significant 

research on improving the quality of the phase vocoder in pitch shifting is 

ongoing, but this work is outside the scope of this discussion. 

 

4.3.3 Further Effects and Future Possibilities 

 

Although time and pitch modifications have been the primary uses of the phase 

vocoder in digital music to date, a variety of other exotic effects have been 

achieved. It is important to note that the frequency-domain representation used 

by the phase vocoder offers a very new, unique and powerful means of 

manipulating sound. Such frequency domain manipulations would not be 

possible with a lesser signal processing technique. The examples of phase 

vocoder implementations for achieving such effects presented in this work only 

serve as demonstrations of the capabilities of the technique; the possibilities for 

future work doubtlessly extends far beyond these. 

 

                                                
18 Unless desired otherwise; see Section 4.3.3 for examples of how this information may be 
manipulated with interesting musical consequences. 
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Such innovative manipulations include “chorusing, harmonising, partial 

stretching” and other radical modifications, described by Laroche and Dolson 

(1999). The software suite developed by the Composer’s Desktop Project 

(Wishart, 1994; Dobson, 2001) includes a phase vocoder which has been 

adapted to perform hundreds of similar feats such as ‘spectral exaggeration’ and 

‘spectral accumulation’. Some of the software effects discussed in Section 3.1 

(e.g. Spectral Monkeyage) provide further examples of the types of audio 

manipulations that the phase vocoder has been used to create.  

 

Apart from the variety of new sounds produced by the phase vocoder, another 

remarkable facet of its adoption by composers has been an attempt to develop 

alternative means of interfacing with the functionality of the phase vocoder, or 

controlling the flow of the music with a phase vocoder which has been 

inherently ‘automated’ to an extent. 

 

An example of such a new means of interfacing with the phase vocoder is 

SPEAR19 (Klingbeil, 2005), a stand-alone program which analyses a sound file 

and allows a user to graphically manipulate individual partials (frequency 

components) before dynamically resynthesising the sound. IRCAM’s 

AudioSculpt performs a similar function using a phase vocoder called SuperVP 

(Bogaards, 2005). These programs, which do not function in real time, have 

created a stir of interest amongst the electronic and electro-acoustic music 

production community in recent years due to the fact that such a 

multidimensional and graphical means of frequency control is so new and 

innovative.   

 

4.3.4 Software Implementations of the Phase Vocoder 

Thanks to efforts by composers and programmers, software implementations of 

the phase vocoder now appear in many forms – amongst many, these developers 

have included the Composers’ Desktop Project (Wishart, 1994), Dobson (1993, 

2001), Dolson (1986), Bernsee (2005), and IRCAM (Bogaards, 2005). The 

outcomes of the work of these parties include freely-available C++ source code, 

                                                
19 SPEAR - Sinusoidal Partial Editing Analysis and Resynthesis. 
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hands-on examples in Csound, Pure Data, and Max/MSP (Figure 11), along 

with countless mainstream audio applications and plug-ins. Examples of such 

applications include SPEAR (Figure 12) and AudioSculpt as described in the 

previous section, and Spectral Monkeyage as described in Chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Phase vocoders in Max/MSP (left) and Pure Data (right). 
 

 

 
Figure 12: SPEAR's innovative interface, which allows control over individual partials. 
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4.3.5 The CARL Phase Vocoder and the Composers’ Desktop Project 

 

An implementation of the phase vocoder of particular interest in this work is the 

Computer Audio Research Laboratory (CARL) phase vocoder (Loy, 2002) and 

its subsequent use by the Composers’ Desktop Project (CDP). Trevor Wishart 

(Wishart, 2000) and a number of collaborators undertook the development of 

this large phase vocoder-based system at the IRCAM audio research institute 

from 1986. Basing his work upon the CARL implementation of the phase 

vocoder, Wishart implemented a number of software ‘instruments’ which 

manipulated the audio spectrum in ways never achieved before: these included 

“stretching the spectrum, spectral morphing, waveset manipulation, grain 

manipulation, sound shredding, spectral cleaning, spectral banding and 

brassage” (Wishart, 2000), and many more. 

 

The CARL phase vocoder and CDP software was later adapted by Richard 

Dobson (Dobson, 2001) in order to function in real-time. Dobson also 

developed the VST versions of the CDP Phase Vocoder plug-ins described in 

Section 3.1.6. The opportunity to learn the intricacies of, and later experiment 

with these open-source plug-ins, offered an excellent starting point for the 

development of the Thaw software. The design of this is now documented in 

Chapter 5. 
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Chapter 5    SOFTWARE DESIGN 

 

This chapter will focus on the conceptual aspects of the Thaw software 

development lifecycle. Although many details of the design have naturally 

evolved and changed during the course of the development, a number of 

fundamental aspects became fixed from the start of the design process. These 

include the choice of digital signal processing solution – the phase vocoder had 

already been chosen for this task, as discussed in Section 3.3. Other such 

practical aspects of the software development process, as well as the reasoning 

behind their selection, are now documented in this chapter. 

 

5.1 Platform 

 

The primary operating systems used on modern computers are Microsoft 

Windows, Apple Macintosh and Linux. All of these platforms are used to some 

extent by computer musicians and, although Linux is enjoying a growing 

popularity for computer music purposes, Windows and Mac attract the vast 

majority of users. 

 

Microsoft Windows was the platform chosen on which to initially develop the 

Thaw software. Windows was chosen mostly for reasons of convenience; these 

include the author’s pre-existing familiarity with Windows programming, and 

the fact that Windows enjoys a far greater level of support from the pre-existing 

software packages used during the development20 than either Mac or Linux. 

 

Notwithstanding these considerations, the choice of development platform is not 

central to the completion of this work – all of the aforementioned operating 

systems mentioned support the same signal processing techniques and sound 

production capabilities (theoretically, at least) and the potential performance 

differences attainable across the systems are usually negligible. The 

                                                
20 Notably the VST Software Development Kit (Section 5.3) and the CARL phase vocoder 
(Section 4.3.5). 



 
- 43 - 

convenience of using Windows as a development platform allowed the software 

development work to focus on the important, internal aspects of the design. 

Furthermore, the ‘porting’ of the software to accommodate Mac and/or Linux 

users remains a future possibility (Section 8.3.3). 

 

5.2 Stand-Alone vs. Plug-In. 

 

Sound creation and manipulation software typically takes one of two forms: 

stand-alone, or plug-in21. Stand-alone applications offer the advantage of not 

requiring a host within which they must perform their functions. Effect hosting 

applications, musical sequencers and waveform editing tools generally take the 

form of stand-alone applications. The plug-in format, however, offers large 

advantages over stand-alone applications, particularly with regard to software 

whose function is to create or manipulate sound. Such plug-in ‘instruments’ and 

‘effects’ may be implemented within complex software structures which allow 

for a high degree of flexibility in the routing of signal and control paths. Effects 

may be chained together in series (as ‘Insert’ effects) or in parallel (as ‘Send’ 

effects) within the same host application, and may be automated22. 

 

Audio processing plug-ins are available in a wide variety of formats, which vary 

with regard to which features and operating systems they support. Such formats 

include DirectX for Windows, Audio Units (AU) for Macintosh, and Linux 

Audio Developer’s Simple Plug-in API (LADSPA) for Linux. However, the 

most popular plug-in format (Steinberg GMBH, 2006) in use today is Virtual 

Studio Technology (VST). For a number of reasons, which are now discussed in 

Section 5.3 below, it was decided that the Thaw software would take the form of 

a VST plug-in. 

                                                
21 A large body of recent audio software development has begun to blur the lines between these 
formats, however. Increasingly, commercial vendors are making their products available in both 
stand-alone and plug-in formats. Furthermore, the number of modular music systems is on the 
increase; these allow for a huge degree of flexibility in the interoperability of different products 
and the routing of audio signals, further breaking down the traditional host/slave paradigm. 
Examples of systems which support such modular structuring include Cycling ’74 Max/MSP, 
Native Instruments Reaktor, Propellorhead ReWire, Plogue Bidule, and many others. 
22 Automation refers to the ‘recording’ of parameter values over time, allowing for non-real 
time, or ‘off-line’, mixing and editing of music. 
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5.3 The Virtual Studio Technology Plug-In Format in Detail 

 

The Virtual Studio Technology (VST) plug-in format was first developed by 

Steinberg in 1996. The format was first incorporated into Steinberg’s Cubase 

Digital Audio Workstation (DAW)23 host software in an attempt to allow for the 

amalgamation of ‘virtual’ studio resources (such as effects, instruments, mixers 

and automation) into the same desktop environment, thereby emulating the 

structure and functionality of a ‘real’ studio which typically consists of the same 

elements in hardware form. In 1997, an SDK24 for the development of VST-

compatible software was released to the public. This open-source kit, as well as 

a freely-available development licence from Steinberg, meant that hobbyist and 

commercial software developers began to take up the development of VST-

compatible software. Furthermore, VST software is cross-platform, meaning it 

may be created for Windows, Mac or Linux platforms, a feature which further 

enhanced its popularity. Given these benefits, VST-compatible plug-ins and 

hosts numbered in their thousands within several years. 

 

VST plug-ins function in real-time and generally take one of two forms: 

instruments, which produce a sound (generally using synthesis, sampling or a 

combination of both); or effects, which modify existing sounds and may be 

chained together. The Thaw software is an example of a VST effect. VST plug-

ins require a host within which they must function. A great number of such 

suitable hosts exist, allowing for the use of VST plug-ins within a broad and 

flexible variety of music production contexts. Furthermore, since the release of 

version 2.0 of the SDK in 1999, VST plug-ins have supported the reception of 

MIDI messages – this has allowed for further flexibility in the control of VST 

software, particularly for software synthesisers. 

 

                                                
23 DAW – a desktop music production environment. Usually consists of a central host 
application, such as Cubase, which enables recording, editing, arranging, sequencing and 
playback of audio and MIDI tracks, as well as the capability to use plug-ins. 
24 SDK – Software Development Kit. A collection of resources, including source code and/or 
precompiled libraries and documentation, aimed at assisting the development of software. 
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Perhaps the most significant advantage of developing the Thaw software in the 

form of a VST compatible plug-in has been the ability to focus on the internal 

and innovative processes of the software – the development of a stand-alone 

product, or indeed a lesser-supported plug-in format, would have involved 

spending a significant amount of time on aspects of the software which are not 

required by the VST standard. A Graphic User Interface (GUI), for example, 

does not necessarily need to be included when developing a VST plug-in – 

although the usability and visual aesthetics of a plug-in are generally enhanced 

by the inclusion of a GUI, the host application supplies a generic set of 

graphical slider controls if one is not included. Similarly, the VST standard does 

not require the programmer to communicate with the computer’s audio 

hardware or drivers. Instead, the host simply passes a stream of digital 

numbers25 to the plug-in, which may be manipulated as the programmer wishes. 

The VST SDK provides a framework for the programmer’s definition of all the 

functions and processes which are central to the operation of the VST. 

 

The architecture and language of the VST standard SDK version 2.4, as well as 

its role in the development of Thaw, will be explored in further depth in Chapter 

6. 

 

5.4 Programming Language and Environment 

 

A number of programming languages including Visual Basic, Java, Pascal, 

Delphi, and even machine/assembly code, have successfully been used in the 

development of audio processing software. The majority of these, however, 

suffer from deficiencies such as low efficiency and a lack of support from 

SDKs. Most of these languages are suited to the development of musical 

programs which do not involve processing large quantities of digital audio data 

– for example, notation software or software for handling MIDI signals. 

 

                                                
25 Each of these floating point (i.e. real, non-integer) numbers in the range of -1.0 to +1.0 
represents an individual digital audio ‘sample’ – at CD standard audio quality, the VST will 
receive 44,100 such samples per channel per second. 
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The most commonly used languages for developing audio applications are C 

and C++ – these languages have a wide feature set, produce fast and highly 

efficient code, and are supported by the majority of audio SDKs. Despite a 

number of weaknesses such as having a difficult learning curve and a tendency 

to produce bewildering and esoteric errors, it was decided that the Thaw 

software would be written using a combination of C and C++26.  

 

The Microsoft Visual C++ 6.0 IDE27 was used in order to facilitate the C and 

C++ software development. Although different IDEs are available, as well as 

newer versions of Visual C++, Visual C++ 6.0 was chosen as it has a proven 

track record and benefits from high levels of online support in the development 

of VST software.  

 

5.5 Implementation Fundamentals and Strategy 

 

The process of VST development began once the goals of the Thaw software 

development were eventually crystallised, as discussed in Chapter 1, and 

following decisions on the overall design, as discussed in this chapter. No 

project timeline was drafted prior to the commencement of development due to 

the previously unexplored nature of this particular project. However, in 

accordance with good software engineering principles a detailed project log, 

excerpts of which are reproduced in Appendix II., was maintained throughout 

the development process. This, along with a comprehensive backup repository 

of the software itself, ensured that the development process proceeded at a good 

steady pace without major setbacks. 

 

The final form of the completed product, including an explanation of the 

algorithms which are central to its innovative methods of sound transformation, 

is now documented in the following chapter.  

                                                
26 The C++ language is an extension of the earlier C language. While C is faster, the object-
oriented nature of C++ is generally better for producing programs with any non-trivial degree of 
complexity (Deitel & Deitel, 2001). 
27 IDE – Integrated Development Environment. A program which integrates the elements 
necessary for software development, such as text editor, compiler, linker and debugger. 
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Chapter 6    SOFTWARE IMPLEMENTATION 

 

This chapter documents several of the important algorithms and methods used 

within the Thaw software. Pseudo code28 is used to explain much of the Thaw 

functionality in this chapter; C++ literate readers may consult Appendix I. for 

C++ code snippets which correspond to the pseudo code in this chapter, or may 

access the accompanying CD in order to view the entire source code of the 

project. 

 

The Thaw software utilises three pre-existing code sources which were 

necessary for the implementation of the plug-in. These consist of the Steinberg 

VST SDK version 2.4 (Steinberg GMBH, 2006) –  see also Section 5.3; an 

implementation of the CARL phase vocoder which was previously modified by 

Richard Dobson and the Composers’ Desktop Project for real-time functionality 

(Dobson, 2001) – see also Section 4.3.5; and a Low Frequency Oscillator class 

by Remy Muller (Muller, 2003).  

 

6.1 Thaw Sound Transformations and their Parameters 

 

Thaw allows controls over its functionality via eleven parameters which may be 

manipulated in real-time by the user using either a computer mouse or MIDI 

controller29, or by the host software using automation. These parameters specify 

the nature and magnitude of the sound transformations executed by the 

software. The function of each of these parameters and their subsequent effects 

is now explained: 

 

- Dry/Wet mix:  this parameter allows the user to cross-fade the 

frozen/thawed or otherwise modified ‘wet’ sound created by the plug-in 

                                                
28 Pseudo code – an explanation of software algorithms in plain terms, without the use of a 
specific computer language. In this chapter, the pseudo code contains snippets of Thaw code – 
class, object, method and variable names, as well as other key words which appear in the C++ 
code itself, are highlighted here in the Courier New  font. 
29 The ability to use MIDI controllers for changing Thaw’s parameters is dependent on the 
capabilities of the host software. 
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with the ‘dry,’ unaffected sound which is being fed to the plug-in from the 

host. This parameter is not strictly necessary as most hosts will allow the 

plug-in to be used as a ‘send’ effect, thereby allowing these sounds to be 

mixed manually outside the plug-in. The inclusion of a Dry/Wet mixer 

within the plug-in, however, allows for easier structuring within many 

modular music production environments and was therefore included 

following requests from several beta testers (Appendix III.). It is worth 

noting at this point that Thaw’s phase vocoders are constantly active, 

whether or not the freeze effect is On or any other effect is active – this 

results in slight audible artefacts (as mentioned in Chapter 4) when the 

Dry/Wet mix is set to 100%. Furthermore, because of a slight latency in the 

operation of the phase vocoder, a very short echo is audible when the Wet 

and Dry signals are mixed together and the effect is Off. This is not a major 

issue, however, as the user would have little reason to blend these signals 

when the effect is Off. 

 

- Off/On:  this parameter allows the ‘freeze’ functionality to be switched on. 

When this happens, the phase vocoder captures a single frame of 

frequency/amplitude data30 and resynthesises this instead of the usual 

overlapping analysis windows. This important functionality is central to the 

operation of Thaw and contributes strongly to its originality – the algorithm 

is explained in detail in Section 6.4.2. The user may still manipulate the 

(non-frozen) sound with all of the other parameters, even when this 

parameter is set to Off. 

 

- Pitch Shift: this simple pitch shifter raises the values of the frequency 

components in the phase vocoder analysis frames. It does not preserve the 

relative relationships between the harmonic components of the sound, as 

most conventional pitch-shifting algorithms do, thereby allowing this 

function to create unusual sounds which bear little resemblance to the non-

pitch shifted original. Furthermore, this function is cyclical – the pitch-

                                                
30 In Thaw, the frame is approx. 20ms or 1024 samples long by default; therefore, when the 
freeze effect is On, the listener is essentially hearing a synthesised reproduction of the average 
timbral characteristics of a 20ms segment of sound. 
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shifted sound ‘wraps around’, returning to the original pitch and allowing 

for the creation of a sound akin to Shepard tones31. 

 

- Spectral Degradation: this feature, which is made possible by the unique 

nature of the phase vocoder, takes a user-specified proportion of random 

amplitude components of the spectral data and sets them to zero. This 

effectively cuts a proportion of random frequencies from the synthesised 

sound and produces a noisy, warbling effect. This parameter is suitable for 

producing noise-based drones. 

- Low Frequency Oscillator (LFO): an LFO is a continuously modulating 

value corresponding to one of several wave shapes. While oscillators of 

much greater rate/speed are commonly used to produce audio tones, LFOs 

are typically used to modify existing sounds; often in order to produce 

tremolo, vibrato or similar effects. In Thaw’s case, the LFO is used to 

modify the frequency components of the phase vocoder data, producing 

rising and falling pitches. The operation of the LFO depends on the 

following parameters: 

o LFO Modulation Factor : this parameter specifies the 

proportion of frequency components which are to be affected by 

the LFO. At low values, its effects are minimal. At the 

Modulation Factor’s maximum setting, the LFO affects all of the 

frequency components of the sound. 

o LFO Wave Shape: the user may select one of a common 

number of wave types in order to vary the nature of the 

movement of the LFO – the options consist of sine, triangle, 

sawtooth, square and exponent waves. These wave shapes were 

included in the pre-existing LFO algorithm; however, the author 

has extended these by implementing a random LFO wave shape. 

With the proposed drone aesthetic in mind, this random wave 

shape is intended to allow the user to create a more organic 

sound, thus offering an alternative to the other periodic and 

                                                
31 Shepard tones are an auditory illusion that gives the impression of an infinitely rising or 
falling pitch. 
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rhythmic wave shapes. The original algorithm for producing the 

random wave-shape is documented in Section 6.4.5. 

o LFO Rate: the speed/frequency at which the LFO operates. As 

Thaw is intended to produce slowly-moving sounds, the 

maximum LFO speed is limited to 24Hz (i.e. 24 cycles per 

second); this allows very fast vibratos and a slight ring 

modulation effect, however, user control for this parameter is 

logarithmic to allow for more precision when selecting very low 

frequencies. This logarithmic relationship is described in more 

detail in Section 6.4.5. 

o LFO Depth: the degree to which the LFO will alter the 

frequencies in the phase vocoder analysis windows, 

corresponding to the pitch of the sound produced. The LFO 

Depth is essentially a more flexible, automated version of the 

manual Pitch Shifter parameter. 

-  Spectral Filter: allows the user to boost or cut a specified band of 

frequencies. Although the functionality of this feature is similar to that of a 

parametric equaliser, this Spectral Filter is not quite the same as it modifies 

the spectral data produced by the phase vocoder as opposed to the time-

domain signal which is affected by an equaliser. 

o Spectral Filter Centre Frequency: specifies the frequency in 

the audible range around which frequencies will be cut or 

boosted. Like the LFO Rate parameter, this parameter is 

logarithmically controlled – this is to allow a greater degree of 

control in the lower, musically important end of the audible 

spectrum. 

o Spectral Filter Gain: this parameter specifies whether the sound 

is to be cut or boosted by the filter. Negative values indicate a 

cut, positive value indicate a boost. 

o Spectral Filter Bandwidth: specifies the range of frequencies 

around the centre frequencies which will be affected. This 

parameter is analogous to the ‘Q’ parameter found on most 

parametric equalisers. 
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6.2 Software Structure 

6.2.1 File Structure 

Figure 13 (below) illustrates the hierarchy of the files used in Thaw’s Visual 

Studio project. The nature of the interaction between the classes in these files is 

now discussed in Section 6.2.2. 

 

 
Figure 13: The Thaw project's file structure. Bold names indicate folders. 

 

6.2.2 Class Structure 

 

Like the majority of similar modern software products, an object-oriented 

design strategy was applied to the development of Thaw. While this design 

principle assists in the manageable construction of sizeable software products 

and the relatively easy integration of pre-existing software components, it may 

not be familiar to the uninitiated reader. Furthermore, as a wider discussion of 

object-oriented design principles is outside the scope of this work, this section 

will not attempt to explain the Thaw software architecture in formal detail. 

Thaw Project 
 vstplug.def 
 Interfaces 
  aeffect.h 
  aeffectx.h 
  vstfxstore.h 

vst2.x 
  audioeffectx.cpp 
  audioeffectx.h 
  vstplugmain.cpp 

… 
 pvocex 
  pvoc.cpp 
  pvpp.h 
  … 
 Lfo  
  LFO.cpp 
  LFO.h 
 Apvoc.cpp 
 Apvoc.h 

CFunctions.c 
CFunctions.h 
Thaw.cpp 
Thaw.h 
ThawMain.cpp 

Pre-existing libraries 

Author code 
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Rather, it will attempt to provide the reader with a good high-level 

understanding of how the different elements of the software integrate with each 

other and function in real-time.  

 

As previously mentioned, Thaw is constructed using a number of components. 

These include a large amount of original code, code derived from the Steinberg 

VST SDK, instances of a modified CARL phase vocoder, and a simple LFO 

class which has been extended to incorporate a new wave shape specifically for 

Thaw. The nature of the interaction between these components is outlined in 

Figure 14:  

 
Figure 14: The relationships between the components of the Thaw software32. 

                                                
32 This diagram is an informal and non-exhaustive illustration of the Thaw software architecture 
and its components. Interested readers are encouraged to read the relevant C++ header (.h) files 
on the accompanying CD in order to gain an insight as to the formal structure of the Thaw 
software. 
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An object named Thaw is created upon the opening of an instance of the plug-in 

and is therefore the entry point of the software. It is derived from a base class 

defined in the VST SDK – this means that not only does it provide access to the 

functionality of the SDK in order to perform all of the necessary interaction 

between the host and the plug-in, but it also provides the ability to extend the 

capabilities of the SDK to suit the intended purposes of the software.   

 

Upon its creation, the Thaw object is called by the host software. It creates and 

initialises two instances of the Apvoc  class, named myPvoc1  and myPvoc2 . 

Each of these incorporates phase vocoders which analyse and resynthesise the 

audio streams passing through each of two audio channels. For every numerical 

sample received by Thaw from the host, methods called tick() , members of 

myPvoc1  and myPvoc2  are called, thereby incrementing the phase vocoders. 

 

Thaw also creates one instance of the LFO class named myLfo . myLfo  is 

similarly called every time Thaw receives a new sample. myLfo  is initialised 

and thereafter returns a value back to Thaw representing a low frequency wave 

of variable shape. This value may be used as desired; its use in the Thaw 

software is explained in Section 6.4.4. 

 

The methods/functions of each of the Thaw, myLfo , and myPvocs  objects 

may be roughly subcategorised as Initialisation, Utility and Processing. Upon 

the creation of each new object, Initialisation methods are called – in Thaw’s 

case, this occurs when the plug-in is initially loaded. Utility methods may be 

called as required – for example, in the case of a user-defined change of plug-in 

parameters or a change in preset/program. Processing methods are called in real-

time and are therefore central to the processing of the real-time stream of digital 

data received by the host. All other Processing methods are called from Thaw’s 

processReplacing()  method.  

 

Several of Thaw’s most important methods will be explained in the following 

two sections. The source code for all of these algorithms is available in 

Appendix I.  
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6.3 Initialisation Methods 

6.3.1 Thaw Initialisation 

 

Method name: Thaw::Thaw(...) : AudioEffectX(...)  

The constructor33 for the Thaw class, which is derived from the fundamentally 

important SDK-defined AudioEffectX  class34, performs the following 

functions upon the loading of the plug-in: 

 

Algorithm: 

- Get the sample rate from the host. 
- Create and initialise a ThawPrograms  object (for storing plug-in 

presets35). 
- Initialise all of the plug-in parameters to their default values. 
- Set the number of inputs and outputs. 
- For each audio channel, create and initialise an object of type Apvoc . Pass 

the sample rate, FFT length, overlap factor and window type to each object. 
Perform some error checking. 

- Set the default values for freezing  and freezeOnce  to tell the phase 
vocoders that the plug-in is not yet in ‘freezing’ mode. 

- Create an object of type LFO – initialise the rate, phase and waveform. 
 

6.3.2 Phase Vocoder Initialisation 

 

Method name: Apvoc::init(sampleRate, fftlen, overlap, 

mode) 

This method is called upon the creation of the myPvocs  objects, immediately 

following the initialisation of the Thaw object. It prepares the phase vocoder for 

its subsequent task of analysing and resynthesising the incoming audio samples: 

 

                                                
33 Constructor – a method which is called when an object is first created. The constructor is 
typically used for initialising an object and its member functions. 
34 AudioEffectX  is essentially the host’s means of communicating with the plug-in. 
35 The VST plug-in architecture allows for the definition of preset parameters. This is often 
useful to allow users of many types of plug-ins in getting started. However, it was decided that 
Thaw would not include presets, due to its experimental nature and suitability for nurturing 
experimentation from the user. 
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Algorithm: 

- Perform some error checking. 
- Initialise some variables indicating the size and overlap of the phase 

vocoders and the number of frequency bins36 in each phase vocoder frame. 
Define buffers to hold phase vocoder bins and initialise them to zero. 

- Create CARL phase vocoder objects; one each for analysing and 
resynthesising the streaming audio. Initialise them and perform some error 
checking. 

- Initialise some user-defined flags which will later be used to freeze/unfreeze 
the sound. 

 

6.4 Signal Processing Algorithms 

6.4.1 The processReplacing() method 

 

Method name: Thaw::processReplacing (inputs, outputs, 

sampleFrames)  

This method is called each time the plug-in receives an audio sample from the 

host and therefore is the fundamental driving force behind all subsequent signal 

processing algorithms. processReplacing() is derived from a base class 

which is defined by the VST SDK and is necessary in all VST plug-in effects. It 

operates in real-time, and great care must therefore be taken to make its 

operation as efficient as possible: 

 

Algorithm: 

- Create four buffers: for storing the input and output samples in each of two 
audio channels. Assign these buffers to the inputs and outputs used by the 
host. 

- If  the OnOff  parameter is set to on: 
o freezing  is true. freezeOnce  is false. [1] 

- Else: 
o freezing  is false. freezeOnce  is true. [2] 

- End If  
- If  the LFO shape is changed by the user: 

o Change the LFO to the specified Shape. 
- End If  
- If  the myPvoc objects are functioning correctly: 

                                                
36 Frequency bins are pairs of data representing the amplitude and frequency of spectrally 
analysed signals, as discussed in Chapter 4.  
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o While samples are received from the host: 
� Increment the LFO - LFO->tick().  [3] 
� Request the next sample from the host. 
� Increment the myPvocs  objects and receive a value in 

return. [4] 
� Multiply this returned value by the CrossFade  Factor 

and send to the host. [5] 
o End While 

- End If 
 

Notes: 

[1] If the user specifies that the freezing function is currently on, a variable 

named freezing  is told so. The freezeOnce  variable is set to false, so the 

phase vocoders will simply resynthesise the original sound. This functionality is 

explained in further detail in Section 6.4.2, below. 

[2] If freezing  is true, the freezeOnce  variable will inform the phase 

vocoder to continuously resynthesise a single captured frame of audio rather 

than stepping through the audio in overlapping frames in its usual manner (as 

explained in Chapter 4). This algorithm is fundamental to Thaw’s freeze 

functionality and will be explained in greater detail in Section 6.4.2. 

[3] The LFO object will return a value which may be used as desired – in 

Thaw’s case, this value will be sent to the transformTheFrame() method 

via the myPvocs->tick()  method,  where it will perform modifications on 

the frequency components of the phase vocoder data. 

[4] myPvocs->tick()  is called in real time. It receives the following 

values from processReplacing() : 

- The audio sample which is to be processed. 

- The Freezing  flag. 

- Values relating to the functionality of the Spectral Degrader, Spectral 

Filter and LFO effects – a comprehensive list of these parameters is 

detailed in Section 6.4.4. 

Tick passes a value back to processReplacing()  in return. 

[5] This returned value is multiplied with the original input signal using a 

cross fader (corresponding to the Dry/Wet parameter) and sent back to the host. 
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6.4.2 Phase Vocoder Incrementation and Freeze Effect 

 

Method name: Apvoc::tick (insamp, freezing, lfoFac, 

lfoModFac, pitchShift, spectDeg, notchCF, notchGain , 

notchQ) 

 

This method is responsible for filling the phase vocoder buffers (or frames) with 

incoming samples, analysing each frame when it is filled, calling the function 

which performs spectral modifications (as detailed in Section 6.4.4, below) on 

the information in these frames, ‘freeze’ a single frame if told to do so, 

resynthesise the spectral data contained in the frames, and pass audio samples 

back to the processReplacing()  method, and hence the host, one by one: 

 

Algorithm:  

- If Not  freezing:  
o freezeOnce is set to true. [1] 

- End If  
- Increment the current position in the output buffer. 
- If  the position of the input buffer is equal to the size of the analysis frame: 

[2] 
o Using the phase vocoder, generate an analysis frame of spectral 

data from the input buffer. 
o Reset the current frame position to zero. 
o If  the freezing  effect is currently on: 

� If  freezeOnce is true: 
• Call makeFreezeFrame() . [3] 
• Set freezeOnce to false. 

� End If 
� Call transformTheFrame() , passing the frozen 

frame. [4] 
� Using the phase vocoder, resynthesise this frozen 

analysis frame and add the results to the output buffer. 
o Else 

� Call transformTheFrame() , passing it the 
streaming, non-frozen frame. [5] 

� Using the phase vocoder, resynthesise this analysis frame 
and add the results to the output buffer. 

o End If 
- End If 
- Increment the input buffer, filling it with the next sample from the host. 
- Return the current value in the output buffer to the host. 
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Notes: 

[1] If the freezing effect is currently off, this flag needs to be set to true in 

order to continuously prepare a buffer for when the effect is switched on. 

[2] The code within this If  condition (which comprises the majority of the 

code in this function) is only executed when a new full analysis frame has been 

filled with samples from the host. 

[3] The freezeOnce  flag will only be true whenever the freezing effect is 

initially switched On. A single frame of analysis data is captured using the 

makeFreezeFrame() function. 

[4] This frozen frame is passed to the transformTheFrame() function, 

which applies all of the subsequent spectral modifications – Section 6.4.4, 

below. 

[5] If the freezing effect is NOT currently on, the continuous stream of 

overlapping non-frozen analysis frames is passed to 

transformTheFrame() , thereby allowing the user to apply effects to the 

non-frozen sound if wished. 

 

6.4.3 Creating the Frozen Frame 

 

Method name: makeFreezeFrame(*streamingFrame, 

*freezeFrame, nbins) 

This method is called each time the Off/On parameter is set to On. It is only 

called at the instant the parameter is switched On, and thereafter cannot be 

called again until Off/On has been set to Off and back On again. Its function is 

to copy the contents of the last phase vocoder frame which has been processed 

(streamingFrame ) into a new buffer called freezeFrame . The 

freezeOnce  and freezing  flags, discussed in previous algorithms, will 

then determine when this frozen frame, as opposed to the usual stream of 

continuously overlapping frames, will be resynthesised. The algorithm is quite 

simple; it simply copies the contents of one buffer into another: 

 

Algorithm:  

- Create variables a, a1  
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- For a = 0, a1 = 0; a < nbins; a++, a1+=2 : [1] 
o freezeFrame[a1] = streamingFrame[a1] [2] 
o freezeFrame[a1+1] = streamingFrame[a1+1] [3] 

- End For 
 

Notes: 

[1] Two indices are used by the For loop due to the interpolation of the 

values in the frequency bins; i.e. amplitude and frequency values are stored one 

after the other. 

[2] Amplitude values are copied individually from the phase vocoder 

analysis frame into the frozen buffer. 

[3] Similarly, frequency values are copied here. 

 

6.4.4 The Sound Transformation Algorithm 

 

Method name: transformTheFrame(*inFrame, *outFrame, 

lfoFac, lfoModFac, pitchShift, spectDeg, specFiltCF , 

specFiltGain, specFiltQ, nbins)  

 

transformTheFrame()  is one of only two C (as opposed to C++) methods 

used within the Thaw software. As this method is called very frequently (every 

1024 samples) and performs multiple modifications on hundreds of analysis 

bins every time it is called, efficiency is of the utmost importance – the C 

language is hence more suitable in this context. 

 

transformTheFrame()  is similar in operation to the 

makeFreezeFrame()  algorithm discussed above, but is much more 

complex. It takes an input analysis frame – which may be either the frozen 

frame or the normal streaming sound, as specified by the user – modifies it, and 

returns the modified frame. It receives the following parameters from 

Apvoc::tick()  (most of which originated from the Thaw object and hence 

the user-controllable parameters) when it is called: 

- *inFrame  – a pointer to a buffer where the current analysis frame is 

stored 
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- *outFrame – a pointer to a buffer where the modified analysis frame 

will be stored. 

- lfoFac – the magnitude of the current LFO value (depth multiplied by 

the current rate factor received from the LFO object). 

- lfoModFac – the LFO modulation factor. 

- pitchShift – the pitch shifting factor. 

- spectDeg – the spectral degradation factor. 

- specFiltCF – the spectral filter centre frequency. 

- specFiltGain – the spectral filter gain. 

- specFiltQ – the spectral filter bandwidth. 

- nbins – the number of bins in the analysis frame. 

 

Algorithm: 

- Define variables a and a1  which will be used in the For loop. 
- Define a variable shiftFac = pitchShift * 170 . [1] 
- Define a variable multFac = (1 – lfoModFac) * 100 . [2] 
- Define a variable degFac = (1- spectDeg) * 100 . [3] 
- Define a variable halfFilterWidth = (nbins*(1-

specFiltQ)/2) . [4] 
- Define a variable filterFacHi = (specFiltCF*nbins) + 

halfFilterWidth . [4] 
- Define a variable filterFacLo = (specFiltCF*nbins) – 

halfFilterWidth . [4] 
- Define a variable filterFacGain = specFiltGain * 2 . [4] 
- For a = 0, a < nbins, a++ : [5] 

o If a < 5 * rand()%(101-degFac):  [6] 
� outFrame[a] = 0 . [7] 

o Else If a > notchFacLo && a > notchFacHi:  
� outFrame[a] = inFrame[a] * 

notchFacGain  [8] 
o Else 

� outFrame[a] = inFrame[a]  [9] 
o End If  
o If  a < 5 * rand()%(101-multFac):  [10] 

� outFrame[a+1] = inFrame[a+1] + lfoFac 
+ shiftFac  [11] 

o Else 
� outFrame[a+1] = inFrame[a+1] + 

shiftFac  [12] 
o End If  

- End For 
 



 
- 61 - 

Due to the complexity of the preceding algorithm, C++ literate readers may 

wish to consult Appendix I. or the relevant file on the accompanying CD in 

order to gain a better insight into its operation. 

 

Notes: 

[1] This simply scales the pitch shifting value so that the pitch will return to 

unison when the parameter is set to 100%. 

[2] The use of this variable will be explained in note [10], below. 

[3] The use of this variable will be explained in note [6], below. 

[4] These variables simply calculate how many bins on each side of the 

filter’s centre frequency will be modified by the filter gain parameter. 

[5] This For loop iterates through all of the bins in the analysis frame. Its 

operation is similar in operation to that of the makeFreezeFrame()  

function’s For loop. 

 

The lines of code from note [6] to note [9] perform modifications on the 

amplitude components of the spectrally modified sound: 

 

[6] This condition selects random amplitude bins, the proportion of which is 

decided by the degFac  variable – this action corresponds to the Spectral 

Degradation effect. 

[7] If an amplitude bin is randomly selected, its value is set to zero. 

[8] If an amplitude bin has not been selected, it may still be affected by the 

Spectral Filter – if the bin falls between the filterFacLo  and 

filterFacHi  parameters, this modification (i.e. the cutting or boosting of a 

specified range of amplitudes) is performed here. 

[9] If neither the spectral degradation nor spectral filter modifications apply 

to this bin, it is copied to the output frame verbatim. 

 

The modifications carried out from note [10] to note [12] correspond to changes 

in the frequency components of the analysis frame: 

 

[10] This selects random frequency components, the proportion of which are 

decided upon by the multFac variable – this will decide how much of the 
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sound is to be affected by the LFO and corresponds to the LFO Modulation 

Factor parameter. 

[11] If this frequency bin is to be affected by the LFO, lfoFac  is added. 

shiftFac , the Pitch Shifter factor, is also added. 

[12] If the bin is not affected by the LFO, just the shiftFac  is added. 

 

6.4.5 Further Noteworthy Algorithms 

 

This section briefly describes several algorithms which, while not fundamental 

to Thaw’s functionality, have been implemented in order to improve or enhance 

the aesthetics or usability of the plug-in. 

 

Random LFO Wave Shape 

(Excerpt from) Method name: LFO::setWaveform(index) 

This method is called when the user changes the LFO wave shape to Random. It 

produces a 256 point wave table using a ‘drunken walk’ algorithm37 which was 

written by the author to function in a suitable manner within Thaw. This table is 

accessed by the LFO::tick()  algorithm, thereby passing its points 

sequentially to the transformTheFrame()  method at the specified rate and 

depth. 

 

- Declare a variable i . [1] 
- Declare a variable place  and initialise to zero. [2] 
- For i = 0; i < 256; i++ : [3] 

o If  a random value from 0-4 is equal to zero: [4] 
� place  is assigned the value of place  plus a random 

value: either zero, -0.1 or + 0.1. [5] 
� table[i]  is assigned the value of place . [6] 

o End If 
- End For 
- table[256]  is assigned the value of zero. [7] 
 

Notes: 

                                                
37 The drunken walk algorithm starts at a particular point (in this case zero) and thereafter takes 
a random ‘step’ to the left or right – in the case of this LFO, it will produce a continuous wave 
shape which, while somewhat random, may not become so noisy as to distort the sound. 



 
- 63 - 

[1] i  will be used to increment the For loop, below. 

[2] place  will be used to store the current position of the wave table 

points. 

[3] This For loop iterates through the wave table, filling it with new points. 

[4] This condition is in place to ensure the wave table is not filled at every 

new point, hence reducing noise. 

[5] This is the central part of the drunken walk algorithm. The previous 

value of place  is randomly either increased, decreased or untouched. 

[6] The next point in the table is filled with the current value of place . 

[7] The last point in the table is reset to zero. 

 

Logarithmic Scaling of LFO Rate 

 (Excerpt from) Method Name: setParameter(index, value)  

As Thaw is intended to create slowly moving sounds, it was decided that the 

rate of the Low Frequency Oscillator should be kept low. However, higher LFO 

rates are capable of producing ring modulation38 effects and hence would add 

another dimension to Thaw’s sound modification capabilities. 

 

A short function was therefore written in order to logarithmically scale the user-

controllable LFO Rate parameter to a range of values which would be capable 

of allowing higher LFO rates (up to 24Hz) while offering a much finer degree of 

control at the slower LFO rates (below approx. 4Hz) in order to produce slow 

drones. Another function – which may be examined in Appendix I. – 

logarithmically scales the Spectral Filter Centre Frequency parameter in a 

similar manner, thereby allowing more control at the lower end of the audio 

spectrum. 

 

Function: 

- Declare a variable logVal  and assign it the LFO Rate value  currently 
specified by the user.  

- If  logVal  equals zero: 

                                                
38 Ring modulation is an unusual audio effect which is achieved by combining two audio 
signals, one of which is usually a simple wave form, such as those which Thaw’s LFO is 
capable of producing. At low rates (below 20Hz) the effect is perceived as tremolo or vibrato. 
However, at much higher rates, an unusual and distinctive bell-like sound may be achieved. 
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o Assign a very low non-zero value to logVal . [1] 
- End If  
- Thaw’s LFO Rate is assigned the value (-log10(1 – logVal)) * 5 . 

[2] 
 

Notes: 

[1] The log10()  mathematical function requires a non-zero value; this 

line of code will replace any zero value with an extremely low non-zero value. 

[2] log10() is used here to provide logarithmic scaling and is inverted 

and scaled in order to provide the 0-20Hz range required. 

 

6.5 Further Implementation Particulars 

6.5.1 Phase Vocoder Parameters 

 

During the development process, it was hoped that Thaw’s functionality would 

allow the user to select different phase vocoder window types, sizes and overlap 

factors (as specified in Chapter 4) via several additional parameters. However, 

due to the nature of the CARL phase vocoder used, it was not possible to allow 

the user to change these options after the phase vocoder has been initialised, i.e., 

immediately after the initial loading of the plug-in. Nevertheless, changing these 

parameters within the source code itself is a trivial matter: by default, the phase 

vocoder uses a 1024 sample long Hanning window with an overlap factor of 

four. Consequently, it is envisaged that Thaw will be compiled and distributed 

with a number of variations of these parameters. Furthermore, the software has 

been structured to allow users to easily define their own parameters using 

#define  flags. This flexibility should allow users of the software – whose 

source code will be made openly available – to choose which combination suits 

best, depending on their computational resources and the types of sound they 

wish to process. 
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6.5.2 Software Testing and Refinement 

 

Thaw was developed on a Dell Inspiron 6000 PC running Windows XP Service 

Pack 2 with Intel Centrino 2.2GHz processor, 1 GB RAM, ASIO audio drivers 

and E-MU 1616 audio hardware. During this process, Thaw was continuously 

refined, debugged and tested by the author on an ongoing basis using Tobybear 

MiniHost v.1.64 and Steinberg Cubase SX v.2. MiniHost is a simple application 

whose sole aim is to host VST plug-ins; its simplicity and speed were the main 

reasons it was chosen as the primary alpha test host platform for Thaw. 

Although MiniHost allowed for speedier testing, Cubase offered the opportunity 

to test the plug-in in a much more common and popular music production 

environment which offers multiple track sequencing, multiple plug-in instances, 

automation, and other features which would test the plug-in’s capabilities and 

reveal bugs. Thaw was also tested by the author in Ableton Live, Cycling ’74 

Max/MSP and Jørgen Aase’s energyXT. 

 

Approximately one month prior to the submission of Thaw, copies of the plug-

in were sent to a small group of voluntary beta testers. This group were asked to 

try the plug-in in a variety of different hosts and test machines and to test its 

functionality and reliability, based on a number of guidelines provided by the 

author. This beta testing process and its outcome is detailed in Appendix III. 

 

During beta testing, the ongoing development of the plug-in temporarily ceased 

and the author used the opportunity to further test the software in a real music 

production environment. This process of using Thaw in composition is 

documented now in Chapter 7. 
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Chapter 7    CREATIVE IMPLEMENTATION 

7.1 Concept and Goals 

 

A short composition entitled What Goes Around is presented. The piece, which 

makes abundant use of several instances of the Thaw plug-in, was written under 

the influence of both practical and creative concerns. 

 

From a practical point of view, the composition of this piece has had several 

benefits. Firstly, it is intended to be a demonstration of the sound-producing 

capabilities of Thaw. In this regard, it was composed almost exclusively using 

automation of the Thaw plug-in and intends to demonstrate the scope and 

breadth of sounds which Thaw is capable of producing and manipulating.  

 

Secondly, as its composition was undertaken in parallel with the latter stages of 

development of the Thaw software, the composition process served to 

thoroughly test the plug-in in the type of DAW environment which is regularly 

used by a large majority of computer musicians. Furthermore, this composition 

was in its development stages during the final stages of alpha testing and during 

the entire process of beta testing, thus offering the author the unique ability to 

alter Thaw’s source code and recompile the plug-in whenever a specific 

aesthetic was required or where a previously undetected bug was uncovered. 

Thaw’s final form therefore evolved partially as a result of the personal 

experience of using it in a real computer music production environment. 

 

From a creative point of view, What Goes Around may be interpreted as a 

continuation of the drone-type aesthetic which has been intertwined within 

many and varied types of music throughout history, as discussed in Chapter 2. 

Although the composition’s function as an expression of artistic statement is 

secondary to its role as a demonstration of Thaw, it is hoped that the lack of 

usual musical traits such as rhythm, tonality and thematic development are 
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compensated for by a wealth of unique timbres and the meta-music39 which 

results from interaction between the textures of the component sounds, thereby 

providing the piece with artistic and aesthetic merit as well as a purely 

functional purpose. 

 

7.2 Composition, Production and Post Production 

 

What Goes Around was composed using Steinberg’s Cubase SX DAW software. 

Three audio tracks were used; each of these used an instance of Thaw as an 

insert effect plug-in. No other plug-ins were used in Cubase during this process 

of composition – this decision, along with the decision to make sparse use of 

audio source materials, was taken in order to make the composition as 

transparent as possible in revealing the modifications performed by Thaw. 

 

The source material for the composition consisted of a cello sample, a triangle 

sample, and a very brief quotation from Beethoven’s Moonlight Sonata for solo 

piano. Each instance of Thaw was used to perform sound modifications on its 

respective audio sample throughout the duration of the piece; a frozen snapshot 

of each instrumental sample was taken in the opening seconds of the 

composition and was manipulated with Thaw’s other effects thereafter until the 

end of the piece. This resulted in the creation of consistent yet constantly 

evolving drones. These three samples were carefully chosen in order to present 

as varied an audio spectrum as possible to the plug-ins. 

 

Once the process of composing using automation was complete, each of the 

three audio tracks was exported in a raw form and the post production process 

began. What Goes Around was edited, mixed and mastered in surround sound 

using Apple’s Logic Pro. The use of post-production effects was kept to a 

minimum; again, this tactic aimed to allow the listener to perceive the effects of 

the Thaw software without distraction and hindrance from other effects. Some 

                                                
39 Meta-music – may be described as the rhythms, harmonies, overtones and other musical traits 
which unintentionally emerge at the ‘surface’ of a piece of music as a side effect of the 
interaction between the intended, structured musical components. Meta-music is especially 
noticeable, even intentionally applied, in the minimalist genre and in spectral music. 
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reverberation was added to the mix on a ‘send’ effects bus, and equalisation was 

added to each track in order to remove some of the noisy high-frequency 

artefacts caused by the phase vocoder. A noise reduction plug-in was also used, 

in order to improve the quality of the unfrozen Moonlight Sonata track at the 

end of the piece. 

 

 
Figure 15: A screenshot of the Cubase production environment in which What Goes 

Around was composed. The horizontal blue lines represent the automation curves which 
comprise almost the entire composition. 

 

7.3 Aesthetic 

 

What Goes Around begins with a slow fade-in revealing three concurrent, 

spatially distributed and largely static drones. Over several minutes, Thaw’s 

effects are used to linearly change the drones from largely static through a 

variety of stages which are mainly characterised by different LFO settings40 and 

                                                
40 In particular, the Random LFO shape (which was specifically written with the drone aesthetic 
in mind) offers a highly organic feel to the composition by creating random, jerky pitch changes 
at the specified magnitude. 
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pitch changes. The spatial distribution of the drones is varied from time to time 

by means of surround panning, and each track’s dynamic level occasionally 

changes, usually in order to reveal noteworthy sounds in certain drones at 

certain times. 

 

The magnitude of the effects is gradually increased over time; continuously 

rising pitches, rising levels of distortion and ever-increasing LFO rates lead to 

an agitated, ‘wall of sound’ type aesthetic by the fourth minute of the 

composition. At approximately this point, all effects – except for the 

fundamental ‘freeze’ effect – are abruptly removed, and the drones again 

become static. This aesthetic is sustained for approximately one minute, during 

which more of the meta-music caused by the interacting drones becomes 

apparent, lending a gentle, pulsating feel to the music. At the end of the 

composition, a final pitch change leads seamlessly into the ‘unfreezing’ of each 

drone, thereby allowing the listener to recognise the instrument which was used 

to initially create each drone. 

 

 

 

 



 
- 70 - 

Chapter 8    CONCLUSIONS AND FUTURE 

POSSIBILITIES 

 

This chapter will summarise the sonic and functional performance of the Thaw 

software. The extent to which the goals of the work were achieved will then be 

discussed. Finally, proposals for future developments and extensions to Thaw, 

as well as outlines of several broader conceptions based on this work, will be 

presented. 

 

8.1 Observations on Sonic Performance 

 

Regarding the aim of creating completely static and unmodulating ‘snapshot’ 

sounds, as discussed in Chapter 1, Thaw’s performance ranges from acceptable 

to highly convincing. The end result depends to a large extent on the phase 

vocoder’s attributes; that is, by varying the choices of window type, length and 

overlap factor – often at the expense of computational performance – the plug-

in’s resulting aesthetic will change. The source sound’s spectral characteristics 

are, however, a much greater factor in this regard. Well-pitched monophonic 

sounds may be ‘frozen’ with excellent results; a musical note may seamlessly 

and convincingly be sustained indefinitely where a listener would normally 

expect it. Polyphonic sounds occasionally do not successfully convey the 

original impression of harmony or pitch in the resynthesised signal. However, 

amplitude and timbre are almost always successfully preserved and, thanks to 

the phase vocoder’s use of a bank of oscillators rather than a looping technique, 

the impression of periodicity is avoided.  

 

As a tool for the not-quite-static manipulation of drones, Thaw introduces a 

number of original effects which serve to give it character, or to give it a 

‘signature’ sound. The Low Frequency Oscillator may be used either to 

discreetly and slowly modulate certain frequencies of a sound, to randomly send 

its components askew, to generate pulsing meta-rhythms, or, at high rates, to 

introduce distortion and ring modulation into the sound. The Spectral Filter may 
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accentuate certain frequency bands and create barely audible melodies through 

slow manipulation of its parameters. The Pitch Shifter may be use to gradually 

skew the timbre of a sound until it is beyond recognition, or, in conjunction with 

the Dry/Wet mix, introduce the phenomenon of rhythmic ‘beats’ which result 

from simultaneously playing closely adjacent pitches. These effects, as well as 

the others included with Thaw, may be used either alone, in multiple instances, 

or in combination with other plug-in instruments and effects, either in off-line 

production contexts – as demonstrated by What Goes Around – or in live 

performance situations. 

 

8.2 Achievement of Goals in Summary 

 

Overall, the goals of this work were achieved. The Thaw software, 

incorporating a phase vocoder and a variety of original effects, has successfully 

been implemented. A composition which serves to demonstrate Thaw’s use as a 

tool for drone creation and sound design has been presented. 

 

It has been demonstrated that the Thaw software is an original, distinctive and 

capable means of producing static and drone sounds and manipulating them in a 

number of innovative ways which, heretofore, have not been available to 

computer musicians. Furthermore, the fact that the effect is encapsulated in a 

VST plug-in format offers novice or inexperienced musicians to use its 

functionality in an environment with which they are familiar.  

 

Perhaps most significantly, as demonstrated by the review of existing products 

in Chapter 3, Thaw is believed to be the only phase vocoder-based product 

whose central goal is the creation of drone-like sounds. This achievement is 

highlighted by the composition of What Goes Around and by the emergence in 

the software of a distinctive, yet highly drone-based and characteristic aesthetic, 

as observed in Section 8.1, above. 

 

Notwithstanding these developments, Thaw is not intended to be a definitive, 

all-encompassing solution for the creation of static and drone sounds. Indeed, it 
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is likely that many experienced computer musicians or sound designers would 

prefer to utilise ‘home brewed’ methods in order to achieve a favoured 

aesthetic.  

 

One of the most significant aspects of the Thaw development has been the 

opportunity to explore and further develop the power of the phase vocoder. As 

previously mentioned, it is widely acknowledged that the phase vocoder’s sound 

modification abilities have only partially been explored; although several 

original effects which harness this power have been implemented in this work, it 

is now even more apparent that much more can be achieved, particularly where 

a drone aesthetic such as Thaw’s is concerned. Following a number of 

suggestions on how the existing Thaw product may be expanded in Section 8.3, 

Section 8.4 will propose a number of conceptual innovations which would take 

advantage of these facets of the phase vocoder, thereby involving significant 

changes to the product. 

 

8.3 Further Proposed Developments to Thaw 

 

It is anticipated that further developments to the version of Thaw presented here 

will soon be undertaken; some of these are now outlined. These developments 

would not require a significant change to the structure of the existing product.  

 

8.3.1 User Interface 

 

During the latter stages of development, the development of a Graphic User 

Interface (GUI) for Thaw was undertaken in the hope that the usability and 

visual aesthetics of the product could be enhanced. Due to time constraints and 

unforeseen programming-related issues, this GUI was not completed to a 

satisfactory standard prior to submission. This is not considered a major issue as 

hosts will automatically assign suitable graphical slider controls for any VST 

where a GUI is not supplied. However, these host-assigned GUIs often do not 

offer an ideal user interaction experience; for example, a button-type control for 
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Thaw’s Off/On parameter would be much more suitable than the current slider-

type control. 

 

More complex graphical controls are also possible. It is widely recognised that 

control of music software via the computer mouse is largely restrictive, one-

dimensional and is generally a poor medium for conveying musical expression. 

Although control of VST parameters is also available via MIDI and automation, 

a number of mouse-based control innovations should greatly improve the 

usability experience of Thaw users. Such an innovation could involve the 

pairing of comparable parameters in a two dimensional controller (as 

exemplified by GRM Freeze, Section 3.1.1). 

 

It is hoped that Thaw’s GUI, inclusive of such innovative control methods, may 

be completed as soon as possible. The completion of this GUI should also serve 

to eliminate an existing glitch which was discovered in two of Thaw’s host-

assigned GUIs during beta testing (detailed in Appendix III.). A prototype for 

the graphics of a partially completed interface for Thaw, as well as examples of 

the aforementioned host-assigned GUIs, may be inspected in Appendix IV.  

 

8.3.2 Optimisation 

 

Although the alpha and beta testing processes indicated that Thaw performed 

without significant flaws on a variety of modern PCs, it was noted that the plug-

in was quite heavy in its CPU usage; whilst processing a stereo file, each 

instance of the plug-in would typically consume 20-30% of the resources of a 

Pentium Centrino 2.2GHz processor. As most VST-based desktop music 

production environments would typically use many and varied plug-ins, this 

scenario may deter a musician from using something as CPU-heavy as Thaw. 

 

Improvements in Thaw’s performance efficiency would therefore seem wise. A 

significant improvement may be achieved through the use of more efficient FFT 

routines; in personal correspondence from Richard Dobson, who first 

implemented the CARL phase vocoder in a VST environment, it was 
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recommended that the Fastest Fourier Transform in the West (FFTW) be 

implemented in place of the generic, inefficient FFT libraries which are 

currently used. The FFTW architecture (Frigo & Johnson, 1998) optimises itself 

to take advantage of the hardware architecture of the machine on which it is run, 

therefore offering much improved performance. It is hoped that the successful 

implementation of the FFTW libraries and other such optimisations can soon 

take place.  

  

8.3.3 Multiple Platform Support 

 

As previously mentioned in Section 5.3, the VST standard allows for the 

development of plug-ins for multiple platforms. Although the current 

incarnation of Thaw has been developed for the Windows-based PC, it is 

theoretically a trivial matter to ‘port’ the existing source code so that Thaw can 

run on other platforms, notably Apple Macintosh and Linux. This porting, 

which is planned for the near future, should significantly increase Thaw’s 

potential user base. 

 

8.4 Scope for New Creativity 

 

It is envisaged that the Thaw software will be released as a free, modifiable, and 

open-source plug-in following the completion of this work. This action will be 

taken with the objective of making Thaw’s functionality available to any 

interested party who may wish to build upon its achievements, whether these 

interests lie in the creation of drone music, or merely in the functionality of the 

phase vocoder in a real-time environment. It is hoped that this release will be 

the first and most important step in prompting future innovative work which 

might expand upon Thaw’s achievements. This section will now propose 

several of the author’s ideas for such expansions. 
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8.4.1 An Enhanced Implementation Context 

 

While the inner workings of Thaw’s phase vocoder effects are quite complex, 

the context in which they are implemented is relatively simplistic. In other 

words, there is a hands-on, linear, and straightforward relationship between the 

user controls and the sonic end result. While this straightforward control path 

allows for a high degree of user control which does not require a steep learning 

curve, the implementation of a more complex means of controlling the effects 

could lead to a large broadening of the scope of sounds which Thaw is capable 

of producing. 

 

Such an implementation could involve internally automating certain Thaw 

effects. For example, an algorithm which would automatically switch on or off 

Thaw’s Freeze effect at certain rhythmic intervals specified by the user might be 

implemented. This could take the tempo parameter from the host, thereby 

freezing and unfreezing the sound in a manner which would align Thaw’s 

resultant sound with the rhythm of the relevant composition. This would be a 

relatively simple algorithm to implement; however, it may have the unintended 

side-effect of destroying Thaw’s role as a drone tool and instead result in a tool 

for the creation of glitch-type music! 

 

Nevertheless, such inherent automated modes of control are on the increase in 

VST plug-ins (as demonstrated by products such as Sloper and FitchSplifter in 

Chapter 3) and, with careful implementation, such control modes would 

doubtlessly enhance the scope and type of sounds Thaw is capable of producing 

as well as improving its usability.  

 

8.4.2 Vector-Based Frame Morphing 

 

This proposed effect would extend Thaw’s current drone-producing abilities by 

further exploiting the nature of the phase vocoder. Its implementation would 

involve a significant change to Thaw’s software architecture. 
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Instead of creating a single ‘frozen’ snapshot frame, as is the case with the 

current incarnation of Thaw, this effect would involve the creation of two or 

more such frames over time, and a subsequent transformation from one frame to 

the next involving vectors. In this case, vectors would refer to a number of 

‘lines’ drawn from each frequency/amplitude bin in the first frame to the 

corresponding bin in the next frame, thereby causing linear transformations 

from one frozen state to the next. The rate at which these transformations occur, 

as well as the number of frozen states which would be involved in the 

transitions, would be specified by the user. 

 

It is possible to achieve this effect in a manual and tedious manner using 

software such as SPEAR (Section 4.3.3). Furthermore, the implementation of 

this effect in a real-time environment could be difficult and may not allow for a 

predictable degree of user control. Nevertheless, this proposed effect could 

allow for the easy creation of a highly innovative type of drone. 

 



 
- 77 - 

REFERENCES  

 

Anderson, J. (2000). ‘A Provisional History of Spectral Music’, in 

Contemporary Music Review, 19(2), p. 7-22. 

 

Bernsee, S. (2005). The DFT “à Pied”: Mastering The Fourier Transform in 

One Day [online], available: http://www.dspdimension.com/ [accessed 

7th June 2006]. 

 

Bogaards, N. (2005). ‘Analysis-Assisted Sound Processing with AudioSculpt’, 

in Proceedings of the 8th International Conference on Digital Audio 

Effects, Madrid, Spain, Sept 20-22, 2005.  

 

Cunningham, A. (2003). Maul: A tool for sound creation and rhythm 

correction, unpublished thesis (M.Sc.), University of Limerick. 

 

Deitel, H. & Deitel, P. (2001). C++: How to Program, 3rd ed., USA: Prentice 

Hall. 

 

Dobson, R. (1993). The Operation of the Phase Vocoder: A non-mathematical 

introduction to the Fast Fourier Transform [online], available: 

http://www.bath.ac.uk/~masjpf/CDP/operpvoc.htm [accessed 13th July 

2006]. 

 

Dobson, R. (2001). ‘A Prototype Real-time Plugin Framework for the Phase 

Vocoder’, paper presented at Music Without Walls? Music Without 

Instruments?, De Montford University, 21-23 June 2001. 

 

Dolson, M. (1986). ‘The Phase Vocoder: A Tutorial’, in Computer Music 

Journal, 10(4), p. 14-27. 

 

Dudley, H. (1939). ‘The Vocoder’, in Bell Labs Record, 17, p. 122-126. 

 



 
- 78 - 

Fineberg, J. (2000). ‘Spectral Music’, in Contemporary Music Review, 19(2), p. 

1-5. 

 

Flanagan, J., & Golden, R. (1966). ‘Phase Vocoder’, in The Bell System 

Technical Journal, 45(11), p. 1493-1509. 

 

Free Software Foundation (1991). GNU General Public License [online], 

available: http://www.gnu.org/licenses/gpl.html [accessed 24th July 

2006]. 

 

Frigo, M. & Johnson, S. (1998). ‘FFTW: an adaptive software architecture for 

the FFT’, in Proceedings of the 1998 IEEE International Conference on 

Acoustics, Speech and Signal Processing, Seattle, USA, 12-15 June, 

1998. 

 

Gann, K. (2001). Minimal Music, Maximal Impact [online], available: 

http://www.newmusicbox.org/page.nmbx?id=31tp00 [accessed 25th July 

2006]. 

 

Grey, J. (1977). Timbre discrimination in musical patterns, in Journal of the 

Acoustical Society of America, 64, p. 467-472.  

 

Groupe de Recherches Musicale (2006). GRM Tools Freeze VST [online], 

available: http://www.grmtools.org/quicktour/vstqtclassic/freeze.html 

[accessed 8th August 2006]. 

 

Howard, D. & Angus, J. (2001). Acoustics and Psychoacoustics, 2nd ed., UK: 

Focal Press. 

 

Jonsson, M. (2005). Ambience Reverb Documentation [online], available: 

http://www.smartelectronix.com/~magnus/#Ambience [accessed 22nd 

March 2006]. 

 



 
- 79 - 

Klingbeil, M. (2005). Software for Spectral Analysis, Editing and Synthesis 

[online], available: http://www.klingbeil.com/papers/spearfinal05.pdf 

[accessed 24th July 2006]. 

 

KVR Audio (2006). KVR DSP and Plug-In Development Forum [online], 

available: http://www.kvraudio.com/forum/viewforum.php?f=33 

[accessed March 2006 – September 2006]. 

 

Laroche, J. & Dolson, M. (1999). ‘New Phase-Vocoder Techniques for Pitch-

Shifting, Harmonizing and Other Exotic Effects’, in Proceedings of the 

1999 IEEE Workshop on Applications of Signal Processing to Audio and 

Acoustics, New Paltz, New York, Oct 17-20, 1999. 

 

Loy, G. (2002). ‘The CARL System: Premises, History and Fate’, in Computer 

Music Journal, 26(4), p. 52-60. 

 

Miranda, E. (2002). Computer Sound Design: Synthesis Techniques and 

Programming, 2nd ed., UK: Focal Press. 

 

Morgan, R. (1991). Twentieth-Century Music: A History of Musical Style in 

Modern Europe and America, USA: Norton & Company. 

 

Muller, R. (2003). Implementation file for LFO [copyright notice within source 

code – online], available: 

http://www.musicdsp.org/showone.php?id=152 [accessed 14th August 

2006]. 

 

Niemitalo, Olli (2001). Yehar’s digital sound processing tutorial for the 

braindead [online], available: 

http://www.eumus.edu.uy/docentes/jure/docs/Niemitalo_DSPForTheBra

indead.html [accessed 23rd June 2006]. 

 

Pollard, H. & Jansson, E. (1982). ‘A tristimulus method for the specification of 

musical timbre’, in Acoustica 51, p. 162-171. 



 
- 80 - 

 

Pressnitzer, D. & McAdams, S. (1999). ‘Acoustics, Psychoacoustics and 

Spectral Music’. Contemporary Music Review 19, p. 33-60. 

 

Schnetzler, A. (2003). FlitchSplifter Documentation [online], available: 

http://andreas.smartelectronix.com/index.php?nav=9&p=6&kat=0 

[accessed 24th July 2006]. 

 

Schnetzler, A. (2006). Sloper Documentation [online], available:  

http://www.smartelectronix.com/~andreas/index.php?nav=9&p=4&kat=

0 [accessed 08th August 2006]. 

 

Smith, S. (1999). The Scientist and Engineer’s Guide to Digital Signal 

Processing, 2nd ed., USA: California Technical Publishing. 

 

Steinberg GMBH (2006). Steinberg Virtual Studio Technology (VST) Plug-in 

Specification 2.4 Software Development Kit Documentation [online], 

available: http://www.steinberg.de/324+M52087573ab0.html [accessed 

23rd March 2006]. 

 

Strickland, E. (1993). Minimalism: Origins, USA: Indiana University Press. 

 

Strom, R. (2005). VST Audio Effect Plug-in Programming in C++ [online], 

available: 

http://www.stromcode.com/modules.php?name=Glowdot_Tutorials&op

=list&cat=3 [accessed 15th May 2006]. 

 

Textura (2005). A History of Dronology [online], available: 

http://www.textura.org/newreviewspages/dronesarticle.htm [accessed 

23rd March 2006]. 

 

Wishart, T. (1996). On Sonic Art. Amsterdam: Harwood Academic Publishers. 

 



 
- 81 - 

Wishart, T. (2000). Computer Sound Transformation: A personal perspective 

from the UK [online], available: 

http://www.trevorwishart.co.uk/transformation.html [accessed 9th 

August 2006]. 



 
- 82 - 

APPENDICES 



 
- 83 - 

Appendix I.    C++ Code Examples 

 

Corresponding pseudo code and notes for all methods described here may be 

found in Chapter 6. Comments in the following code are highlighted in bold. 

 

Thaw Initialisation 

From Thaw.cpp 

Thaw::Thaw (audioMasterCallback audioMaster) 
 : AudioEffectX (audioMaster, kNumPrograms, kNumPar ams) 
{ 
 //get the sample rate from the host 
 lSampleRate = audioMaster(&cEffect, audioMasterGet SampleRate, 0, 0, 0, 
0); 
 lSampleRate = sampleRate; 
  
 size = lSampleRate; 
 buffer = new float[lSampleRate]; 
  
 //Initialise programs/parameters 
 programs = new ThawProgram[kNumPrograms];  
 if (programs) 
  setProgram (0); 
  
 setParameterAutomated(kCrossfade,1.0f); 
 setParameterAutomated(kOnOff,0.0f); 
 setParameterAutomated(kLfoRate,0.0f); 
 setParameterAutomated(kLfoDepth,0.0f); 
 setParameterAutomated(kModBins,0.0f); 
 setParameterAutomated(kPitchshift,0.0f); 
 setParameterAutomated(kAmpMod,0.0f); 
 setParameterAutomated(kLfoShape, 0.0f); 
 setParameterAutomated(kSpecFiltCF, 0.0f); 
 setParameterAutomated(kSpecFiltGain, 0.5f); 
 setParameterAutomated(kSpecFiltQ, 0.0f); 
 
 //Initialise I/O 
 setNumInputs (NUMINPUTS);  
 setNumOutputs (NUMOUTPUTS); 
 
 canProcessReplacing(); 
 
 setUniqueID ('cda1'); 
 
 resume (); 
 
 //create myPvocs: objects based on the Apvoc class 
 myPvoc1 = 0;  
 myPvoc1 = new Apvoc(); 
 myPvoc2 = 0;  
 myPvoc2 = new Apvoc(); 
 
 //initialise myPvocs 
 if (myPvoc1 == 0 || (!myPvoc1-> 
init(lSampleRate,FFTLEN,BUFLEN,PVPP_STREAMING))) 
 { 
  delete myPvoc1; 
  myPvoc1 = 0; 
  return; 
 } 
 if (myPvoc2 == 0 || (!myPvoc2-> 
init(lSampleRate,FFTLEN,BUFLEN,PVPP_STREAMING))) 
 { 
  delete myPvoc2; 
  myPvoc2 = 0; 
  return; 
 } 
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 //initialise freeze flags 
 freezing = false; 
 flagOnce = true; 
 
 //initialise LFO 
 lfoRate = 0; 
 lfoDepth = 0; 
 lfoModBins = 0; 
 lfoFac = 0; 
 myLfo = 0; 
 myLfo = new LFO(lSampleRate); 
 if (myLfo == 0) 
  return; 
 myLfo->setRate(getParameter(kLfoRate)); 
 setLfoShape(getParameter(kLfoShape)); 
} 

 

Phase Vocoder Initialisation 

From Apvoc.cpp 

bool Apvoc::init(long sampleRate, long fftlen, long  overlap, pvocmode mode) 
{ 
 int i; 
 if(inpv) 
  return false; 
 if(fftlen <= 0 || sampleRate <= 0) 
  return false; 
 
 if(overlap > fftlen/2 || overlap <= 0) 
  return false; 
 
 long windowsize = fftlen; 
 decfac = overlap; 
 inptr = outptr = 0; 
 nbins = (fftlen + 2) / 2; 
 
 pvoc_frametype outframetype = PVOC_AMP_FREQ; 
 pvoc_frametype inframetype = PVOC_AMP_FREQ; 
 
 try 
 { 
  //create dynamic storage for analysis frames and I/O buffers 
  frame = new float[fftlen + 2]; 
  freezeFrame = new float[fftlen + 2]; 
  morphFrame = new float[fftlen + 2]; 
  inbuf = new float[decfac]; 
  outbuf = new float[decfac]; 
   
  //create phase vocoders for analysis and resynthesis 
  inpv = new phasevocoder(); 
  outpv = new phasevocoder(); 
 
  if (inpv == NULL || outpv == NULL) 
   return false; 
 } 
 catch(...)  
 { 
  cleanup(); 
  return false; 
 } 
 
 //try initialising the phase vocoder objects 
 if(!inpv->init(sampleRate,fftlen,decfac,mode,FFTTY PE)) 
 { 
  cleanup(); 
  return false; 
 } 
 if(!outpv->init(sampleRate,fftlen,decfac,mode,FFTT YPE)) 
 { 
  cleanup(); 
  return false; 
 } 
 
 //initialise the IO buffers and analysis frames 
 for (i = 0; i < decfac; i++) 
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  inbuf[i] = outbuf[i] = 0.0f; 
 for (i = 0; i < fftlen + 2; i++) 
  frame[i] = freezeFrame[i] = morphFrame[i] = 0.0f;  
 
 //initialise the freezer flags 
 freezeOnce = false; 
 freezing = false; 
 
 return true; 
} 
 

The processReplacing() Method 

From Thaw.cpp 
void Thaw::processReplacing (float** inputs, float* * outputs, VstInt32 
sampleFrames) 
{ 
 float* in1 = inputs[0]; 
 float* out1 = outputs[0]; 
 float* in2 = inputs[1]; 
 float* out2 = outputs[1]; 
 
 //sets the freeze flags to send to the myPvocs.. 
 if (fOnOff == 1.0f) 
 { 
  freezing = true; 
  flagOnce = false; 
 } 
 else 
 { 
  freezing = false; 
  flagOnce = true; 
 } 
 
 setLfoShape(fLfoShape); 
 
 if(myPvoc1 && myPvoc2) 
 { 
  while(--sampleFrames >= 0) 
  {  
   myLfo->setRate(fLfoRate); 
   lfoRate = myLfo->tick(); 
   lfoFac = lfoRate * fLfoDepth; 
 
   t1 = *in1++; 
   t2 = *in2++; 
   *out1++ = ((myPvoc1->tick(t1, freezing, lfoFac, fModBins, 
fPitchshift,fAmpMod,fSpecFiltCF,fSpecFiltGain,fSpec FiltQ) * fCrossfade) + (t1 * 
(1 - fCrossfade))); 
   *out2++ = ((myPvoc2->tick(t2, freezing, lfoFac, fModBins, 
fPitchshift,fAmpMod,fSpecFiltCF,fSpecFiltGain,fSpec FiltQ) * fCrossfade) + (t2 * 
(1 - fCrossfade))); 
  } 
 } 
 else 
 { 
  while(--sampleFrames >= 0) 
  { 
   *out1++ = ((*in1++) * 0.1f); 
   *out2++ = ((*in2++) * 0.1f); 
  } 
 } 
} 
 

Phase Vocoder Incrementation and Freeze Effect 

From Apvoc.cpp 

float Apvoc::tick(float insamp, bool freezing, floa t lfoFac, float lfoModFac, 
float pitchShift, float spectDeg, float specFiltCF,  float specFiltGain, float 
specFiltQ) 
{ 
 long a;  
 if (!freezing) 
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  freezeOnce = true; 
 
 if (!outbuf) 
  return 0.0f; 
 
 //increment the pointer to the next sample in outbuf 
 float outval = outbuf[outptr++];  
 
 if(outptr==decfac) 
 { 
  //generate an analysis frame of window using phase vocoder 
  a = inpv->generate_frame(inbuf,frame,decfac,PVOC_ AMP_FREQ); 
  inptr = outptr = 0; 
  
  if (freezing) // the freeze effect is switched on 
  {    
   if (freezeOnce) //snapshot frame not filled, do so now... 
   { 
    makeFreezeFrame(frame,freezeFrame,nbins); 
    freezeOnce = false; 
   } 
   //Sound transformations to frozen frame are applied here: 
   transformTheFrame 
(freezeFrame,morphFrame,lfoFac,lfoModFac,pitchShift ,spectDeg,specFiltCF, 
specFiltGain,specFiltQ,nbins); 
 
   //resynthesise freezeFrame and send to outbuf 
   a = outpv->process_frame 
(morphFrame,outbuf,(pvoc_frametype)PVOC_AMP_FREQ); 
  } 
  else 
  { 
   //transformations to non-frozen frames are applied here: 
   transformTheFrame 
(frame,morphFrame,lfoFac,lfoModFac,pitchShift,spect Deg, 
specFiltCF,specFiltGain,specFiltQ,nbins); 
    
   //Resynthesise continuous frame, and send to outbuf  
   a = outpv->process_frame 
(morphFrame,outbuf,(pvoc_frametype)PVOC_AMP_FREQ); 
  } 
 } 
 inbuf[inptr++] = insamp; 
 return outval; 
} 
 

Creating the Frozen Frame 

From Cfunctions.c 
void makeFreezeFrame(float *streamingFrame, float * freezeFrame, long nbins) 
{ 
 int a, a1; 
 for (a = 0, a1 = 0; a < nbins; a++, a1 += 2) 
 { 
  freezeFrame[a1] = streamingFrame[a1]; 
  freezeFrame[a1+1] = streamingFrame[a1+1]; 
 } 
} 
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The Sound Transformation Algorithm 

From Cfunctions.c 

void transformTheFrame(float *inFrame, float *outFr ame, float lfoFac, float 
lfoModFac, float pitchShift, float spectDeg, float specFiltCF, float 
specFiltGain, float specFiltQ, long nbins) 
{ 
 int a, a1; 
 
 int shiftFac = (int)(pitchShift*170); //manual pitchshift factor 
 int multFac = (int)((1-lfoModFac) * 100); //LFO modulation factor 
 int degFac = (int)((1-spectDeg) * 100); //amp bins degradation factor  
  
 float halfspecFiltWidth = nbins*(1-specFiltQ)*0.5f ; 
 float specFiltFacLo = (specFiltCF*nbins) - halfspe cFiltWidth; 
 float specFiltFacHi = (specFiltCF*nbins) + halfspe cFiltWidth; 
 float specFiltFacGain = specFiltGain * 3; 
 
 for (a = 0, a1 = 0; a < nbins; a++, a1 += 2) 
 { 
  //amplitude modifications 
  if (a1 < 5 * (rand()%(101 - degFac))) 
   outFrame[a1] = 0; 
  else if (a1 > specFiltFacLo && a1 > specFiltFacHi ) 
   outFrame[a1] = inFrame[a1] * specFiltFacGain; 
  else 
   outFrame[a1] = inFrame[a1]; 
 
  //frequency modifications: 
  if (a1 < 5 * (rand()%(101 - multFac))) 
   outFrame[a1+1] = inFrame[a1+1] + lfoFac + shiftF ac; 
  else 
   outFrame[a1+1] = inFrame[a1+1] + shiftFac; 
 } 
} 
 

Random LFO Wave Shape 

From LFO.cpp 

(Excerpted from) void LFO::setWaveform(waveform_t index) 
{ ... 
 int i; 
 float place = 0.0f; 
 for(i=0;i<256;i++) 
 { 
     if (rand()%5 == 0) 
   place += ((rand()%2)-0.5)* 0.2f; 
     table[i] = place; 
 } 
 table[256] = 0.0f; 
 ... 
} 
 

Logarithmic Scaling of LFO Rate and Spectral Filter CF 

From Thaw.cpp 

(Excerpted from) void Thaw::setParameter (VstInt32 index, float valu e) 
{  
 //ensures 1-logval (for scaling of fLfoRate and fspecFiltCF) is nonzero 
 double logval = value; 
 if (logval == 1) 
  logval -= 0.0001; 
 
 switch (index) 
 { 
  case kLfoRate:  fLfoRate = (-log10(1-logval))*5; 
   break; 
  ... 
  case kSpecFiltCF:  fSpecFiltCF = (-log10(1-logval ))*0.25; 
   break; 
 } 
} 
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Appendix II.    Excerpts from the Development Log 

 
05-06-2006 
- Working version of aDelay sample program. 
 
04-07-2006 
- Developed Apvoc class, similar in structure and context to equivalent classes in the CDP 

plug-ins. The plan is this: Apvoc class contains methods including init to declare and 
initialise in and out phasevocoder() objects. An object called myPvocs is declared and 
initialised in the AudioEffectX method of the Thaw object, i.e. it is created as soon as the 
plug-in is started. 

- The main work, of course, will be done inside the processReplacing method. Am currently 
working on Apvoc::tick() method which will encapsulate phasevocoder::generate_frame 
and phasevocoder::process_frame methods. Not sure how it will work yet but this is how 
Dobson’s spectral plug-ins work. 

 
10-07-2006 
- Bad stuff has been happening…Still facing the tick() problem, and I've done something that 

makes MiniHost crash every time I try to run it. New approach: I am going to try to use 
Dobson's adapted CARL software routines instead of the generic ones I downloaded which 
do not appear to be suitable for streaming pvoc uses. 

 
11-07-2006 
- Finally, a working pvoc! Sorted out the Access Violation Exception mentioned previously 

by sorting out some dodgy pointers. Now have a working analysis/resynthesis algorithm 
although I haven't figured out how to do anything interesting with it yet. Have defined 2 
parameters for the VST, one to control the volume, the other will now be used for 
experimentation purposes... 

 
22-07-2006 
- The freezer works! Took the approach of storing a single analysis frame in a buffer and 

spitting it out while the freeze effect is on.  
- Got some correspondence from Richard Dobson in reply to my email. Looks like there will 

be no licensing problems with the CARL pvoc, thankfully. He recommended I use the 
FFTW libraries for speed, had a look at them, they are quite daunting.  

 
01-08-2006 
- An LFO with controllable rate and depth has been added to the software. At the moment it 

is modulating a specified proportion of the frequency bins in the freeze frame. The effect is 
quite cool but the code to select the proportion of bins needs work 

 
09-08-2006 
- Hope to sort out some issues with the Modulation and Amp deg factors - they are not very 

linear at the moment. 
 
15-08-2006 
- Been trying to implement the GUI but with no luck. 
- Realised it might be a good idea to allow the user to apply the pvoc sound transformations 

even when the effect is not 'On' - while this may not make the plug-in as aesthetically static 
as desired, it does offer a lot more flexibility with regard to functionality. 

 
24-08-2006 
- Code tidied up a great deal. #DEFINE headers put in to allow programmers to quickly 

change pvoc parameters and recompile as desired. 
- Awaiting more beta tester responses. 
- Implemented some more tiny functionality changes in response to tester feedback - LFO 

max rate is now 24Hz. LFO depth in random algorithm has been increased. 
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Appendix III.    Sample Beta Testing Reports 

 

‘Beta testing’ refers to one of the latter stages of software testing whereby a 

product in development is released to a small group of users outside of the core 

development environment in an effort to uncover bugs. Although formal beta 

testing standards and procedures exist, the resources and expertise for 

conducting such processes were limited at the time of testing. Nevertheless, the 

importance of rigorous and structured testing for the purposes of improving the 

final product on many levels was acknowledged. 

 

Therefore, a small group of voluntary beta testers received a copy of the Thaw 

plug-in on 11th August 2006 and were asked to comment on the usability, 

functionality, aesthetics and reliability of the software, following a week-long 

period of testing using various hosts and test machines. In particular, the 

volunteers were asked to perform testing in somewhat unusual scenarios, 

including the use of different sample rates, mono and stereo sound sources, the 

use of multiple instances of the plug-in, automation of the plug-in, and any other 

action which would stretch the functionality of the software to its limits. The 

beta testers’ responses were noted in a log. The table on the following page 

summarises some of this feedback. A list of corrections and enhancements that 

were implemented following the receipt of this feedback is then presented. 
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Tester 
# 

Machine 
Specifications 

Host Software Technical Issues Sample Comments 
on Usability & 

Aesthetics 
Windows 2000, 
Pentium IV, 512 Mb 
RAM 

Ableton Live v.4 Tester 
1 

Windows XP Ableton Live v.5 

[No issues] “left it running for a 
few hours, no 
problems there… on 
occasion the pitch 
can rise by a 
semitone when 
frozen, this might be 
some kind of weird 
alias?” [1] 

Tester 
2 

Windows XP, 
Pentium 1.8GHz, 1 
Gb RAM, M-Audio 
sound card 

Tracktion, 
Max/MSP 

- Tracktion: graphical 
glitch from host-
assigned GUI 
(functionality 
unaffected) [2] 
- Audible glitches when 
rapidly changing 
wet/dry mix [3] 

“why stop LFO Rate 
at 8Hz? Having more 
than 20Hz would 
create cool ring mod 
effect… no crashes” 
[4] 

Tester 
3 

AMD 2GHz, 1 Gb 
RAM, Windows XP, 
Delta 44 sound card 

Audiomulch [No issues] “well impressed with 
it… I couldn’t get it 
to break… creating 
some crazy drones!” 

Tester 
4 

Intel Centrino 
2.1GHz, 1 Gb RAM, 
Windows XP (SP2), 
Indigo sound card 

FL Studio 6, 
Bidule, 
energyXT, 
Usine 

- FL Studio: graphical 
glitches from host-
assigned GUI 
(functionality 
unaffected) [5] 
- Excessive LFO speed 
at 96kHz sample rate[6] 

“a wet/dry mix 
would be useful, for 
using this in Bidule” 
[7]  

 

Notes: 

[1] This perceived change in pitch is in fact the result of ‘freezing’ some 

types of polyphonic sounds using the phase vocoder, as discussed in Section 

8.1. It may be avoided by using a longer phase vocoder window length than the 

default 1024, at the expense of more CPU power. 

[2] This graphical error caused the parameter displays in Thaw’s host-

assigned GUI to display incorrect values for a particular parameter, without 

actually affecting the sounds produced by the plug-in. It is hoped that this 

problem will be rectified in a future version of Thaw, with or without the 

development of a custom GUI for the software. 

[3] Thaw’s cross-fading function does not interpolate between subsequent 

extreme values, therefore sudden extreme changes of the Dry/Wet mix 

parameter can result in audible glitches. It is foreseen that this problem may be 

removed by introducing such interpolation. 
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[4] In response to this tester’s request, the maximum LFO rate was raised to 

24Hz, thereby allowing rapid vibratos and slight ring modulation. A logarithmic 

scaling function, which would allow the user to retain finer control at low 

frequencies, was also subsequently implemented (Section 6.4.5). 

[5] This appears to be the same glitch reported in Note [2]. 

[6] This tester uncovered this elusive bug by using the software with a 

higher sample rate (96 kHz) than the default 44.1 kHz. It was subsequently 

discovered that, in the LFO, the sample rate was ‘hard coded’ at 44.1 kHz rather 

than requesting the sample rate from the host, as it should have been. This had 

the effect of making the LFO rate go twice as fast as intended. This error was 

duly rectified without difficulty. 

[7] The Dry/Wet mix was introduced at an early stage of development, 

following this tester’s request. 
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Appendix IV.    Software Screenshots 

Sample of Host-Assigned User Interfaces for Thaw 

 

 

 

 

 

 

 

 

 

 

 

MiniHost        Cubase 

 

 

 

 

 

 

 

Tracktion     energyXT 
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Prototype Custom User Interface 

 

 

 

 

 

A prototype design for a custom user interface for Thaw. The plug-in’s 

parameters have been grouped into logical compartments in order to improve 

usability. Slider ‘handles’ and parameter displays are not included in this image. 


