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“The drone is the eternal voice of the universe.”
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ABSTRACT

Thaw: Software for the Creation and Manipulation of Steic and Drone

Sounds Using the Phase Vocoder

Cormac Daly B.Sc.

Audio processing software entitled ‘Thaw’ is preteeh The aim for the

development of Thaw is to allow a computer musicinsound designer to
create a perceptual ‘snapshot’ of an instant of sonjic source material, and
allow the manipulation of this snapshot to creatends and other static and
slowly-moving sounds.

The aesthetic motivation for the development of Whia inspired by the

paradoxical concept of music stopped in time, amdieavours to facilitate the
practices of drone minimalism and related droneebasusical aesthetics. A
review of the background to such musical practieesluding spectral music
and more recent drone-based traditions in elearanusic, is therefore

presented. This investigation indicates the needuoh a tool as Thaw, in order
to continue the drone tradition in modern elecitomhusic production

environments.

Bearing in mind the proposed aesthetic, the unaquBo spectrum modification
capabilities of the phase vocoder are harnessedtlar to create the initial sonic
snapshot, and enable subsequent effects. Thestseffecluding low frequency
oscillator, pitch shifter, spectral degrader andapwetric spectral filter, are
implemented in order to ‘thaw’ the initial ‘frozersound and allow for the
creation of the aforementioned drones.

Thaw is successfully implemented in the form of is0&l Studio Technology
(VST) effect plug-in, enabling its use within a adovariety of host applications
and popular computer music production contextss Tthesis documents the
power of the phase vocoder for the creation of sftdcts and the subsequent
design, implementation and refinement of Thaw. Aallvas examining the
originality and significance of Thaw, this documerdncludes by proposing
future enhancements to the software, and by conintemin the significant
potential inherent in the phase vocoder for therkutexploration of the drone
aesthetic.

A short composition entitle@vhat Goes Arounds also presented. This was
inspired by the drone aesthetic and its creatios evaabled by the functionality
of Thaw, thus demonstrating the role of the sofewvan allowing the
development of this tradition in the era of elentcanusic.



Chapter 1 INTRODUCTION AND BACKGROUND

1.1 Conception

The conception for this Masters project evolvedrira fascination with static
sound and the potential for creation of an illusign snapshot of sound.
Peripheral ideas related to this concept were steweloped, refined and
implemented, and later extended to the exploratddnthe creation and

manipulation of static timbres.

Sound, described in a basic physical sense, cerfist wave-like motion. This
motion exists in its natural form as waves of paigally-varying pressure in a
medium such as air, or may be represented electidbynias continuous streams
of analogue or digital data. Sound by its naturthésefore dynamic and exists
only within the context of the time domain. A trismapshot’ of any sound is

impossible.

Initially, this project sought to implement a pieoé software which would
create the perceptual illusion of such a paradbxnapshot; that is, a static,
‘infinitely time-stretched’, unmodulating sound whiwould retain the timbre,

pitch and amplitude of the original sound at thenpwhere it is ‘frozen’.

Initial research, however, unearthed an array efgxisting software products
which sought to achieve this effect to varying etdeand in a variety of
contexts; a representative selection of these ptedare discussed in detail in
Section 3.1 and an analysis of the different digitgnal processing techniques
commonly used to create these techniques is atsepted. The initial plan to
create a simple ‘freezer, as the effect is commdkown, was therefore
extended and this resulted in the software devedmpnphase of this work
culminating in the creation of a plug-in, entitiédhaw’, which allow a
composer to explore the paradox of effectively reimg the time dimension
from the manipulation of a piece of digital audioways that allow new and

unique forms of control over the flow of the musite title ‘Thaw’ was chosen



to represent the nature of the sounds producebebgdftware; initially ‘frozen’

and static, yet capable of becoming ‘thawed’, digsdhy and slowly-moving.

The evolution of the final design for this plugswas heavily influenced by the
unique audio manipulation possibilities offered the phase vocoder. This
digital signal processing technique, which is désmd in detail in Chapter 4,
has attracted much interest amongst both musi@adsprogrammers in recent
years. Therefore, the processes of researchinglesigning Thaw evolved to
incorporate an attempt to take advantage of, ance nmaportantly to build

upon, an open source implementation of the phaseder and thereby further
extend a fascinating vein of research into thi$. tde well as creating the initial

static snapshot of sound, the phase vocoder t#etitthe manipulation of the
resulting audio spectrum in a unique manner, furiewing for exploration of

the creation of static sounds and drones.

Other conceptual factors which contributed towdhdsfinal shape of this work
included a high degree of initial trial and errekperimentation using several
diverse software packages suchPage Dataand Csound and digital signal
processing techniques other than the phase vocadeh as looping and
granular synthesis. The decision to implement thitngre in the form of a
plug-in also meant that the product would needutacfion in real-time; this
implementation scenario offered another set of traimds and exciting

possibilities.

Apart from practical concerns, it is important wenthat this project began as a
creative concept; aesthetic concerns were theréighdy influential throughout
the lifecycle of this work. With this in mind, asgiussion on the history of static
sounds in music, and hence the role of the propsefdare in the creation of

such sounds, is presented in Chapter 2.

A short composition entitletiVhat Goes Aroundnspired by the drone music
tradition and intended to demonstrate the capasliof the Thaw software, is
also presented amongst the deliverables of thiegtorhe development of this

composition is outlined in Chapter 7.



1.2 Goals

As outlined above, the project conceptualisatioahead during the course of
the work and the goals therefore evolved accorgjnggpecially owing to the
large and broad selection of pre-existing work \whias unearthed. Following
a period of refinement and experimentation, a numifeclear aims have
emerged which expand upon the initial concept dfeezer’. The fundamental
goal of creating a static sound remains intact,éw@n, and has been augmented

to encompass a broader scope of research andvitieati

Therefore, the primary goals of this work are do¥es:

- To develop software which will allow computer musi@mns and
composers to create and manipulate high quality ste and slowly-
moving sounds.This software will extend the capabilities of demipre-
existing products by focusing exclusively on theation of such sounds

using the phase vocoder technique.

- To exploit the power of the phase vocoder in the iplementation of this
software. The distinctive possibilities inherent in this ithd signal
processing technique have been explored previonglye manipulation of
musical time and it is widely recognised that thege vocoder offers a
wealth of unexplored possibilities for the creatiohunusual sounds. A
degree of experimentation with such possibilitias been a major factor in

determining the form of the innovations achievethm first goal above.

- Inspired by Dronology and other such musical traditon, to compose a
short piece of music which would exploit the functinality of the
software developed.This piece would also serve to illustrate the added
creative dimension which the Thaw software makeslave to computer

musicians.

With these goals in mind, it is necessary to aagerthe need for the Thaw
software. This process begins with an exploratibthe creative background of

the aesthetic of static sound, in Chapter 2.

-7-



Chapter 2 CREATIVE ORIGINS

The musical or practical need for any software awmdanipulation tool needs to
be explored in order to determine whether anythisgful is to be achieved by
its development. This chapter will, therefore, doemt the long and fascinating
thread of musical tradition which explores statid @rone-like sounds, thereby
attempting to demonstrate that the need existsdoh a tool to continue this
tradition in the era of digital music. Several éxig acoustic instruments which
previously attempted to explore the creation dfictsounds are also discussed;
this aims to further demonstrate the available eiahd necessity for analogous

software tools to create similar sounds.

2.1 Static Sound

While a completely static, unmodulating sound isegelly quite uninterestirig
drone-like sounds are often used in music. Mustrahes, which typically
consist of continuous, static sounds with slowlywving harmonics or timbres,
have frequently been incorporated into many andgaypes of music. Drones
may be harmonic or monophonic, or occasionallyexdiased, and have served
as either fundamental components of musical piecgs perhaps more
commonly, as peripheral embellishments which areimended to capture or
maintain the interest of the listener. A typicatipkeral implementation of the
drone functions as a harmonic centre for a pieceadic. Almost universally,
drone music is rhythmically static or very slow amtstead of drawing attention
to conventional facets such as rhythm and tonadiltpws the listener to focus
their attention on the microscopic, internal aspeat the individual sounds
which comprise the musical whole. Because of tinigresting facets of such
internal aspects of music which would not be apmamre a denser musical
context may be revealed due to the static natutbeofirone; for example, the

emphasis of slight mistunings caused by the eguapérament tuning system.

! This is often the case with any aspect of musiamstlevel. For example, static or repetitive
musical ‘form’, at a macroscopic (high) level, isem to blame for causing a piece of music to
be perceived as boring, as it causes the listemapidly lose interest.

-8-



These, and other dimensions of drone sound, haa® fiemmarised as follows:

...sustained intonation that establishes a harmosmtec for its
accompanying elements...the drone might utilize @lsimote
repeated indefinitely or, at the opposite extreatleof the scale’s
notes spread across numerous octaves. Other kegtaspclude
extended duration, modular repetition, and a fooois
overtones...the trance-inducing drone with its exéehdones
and layered pitches does change but glacially...

(Textura, 2005).

2.2 Early Traditions

The idea of creating static and slowly-moving sauglcertainly not new and
has originated in several forms of ancient and tdomusic; several

representative examples of such genres will nodissussed briefly.

The Japanese gagaku tradition originated fhc@ntury Imperial Japan and
incorporated drone-creating instruments as wellcaaventional tempered
instruments. Gagaku music is still played in Jaoathis day and has influenced
20" century composers including Henry Cowelingaky 1957) and Benjamin
Britten (Curlew River 1964). Hindustani and Indian classical music & a
frequently accompanied by the tambura, which isabsp of playing only
drones, or by the sitar; such music often featiménitely cyclical rhythmic
structures known as ‘talas’, which serve to furtkecommodate the drone
aesthetic. The indigenous didgeridoo music of Aalistris a well-known
example of drone-based music which continues tpléged in the modern era.
One-note drone-like Gregorian chants which predatgphonic Western music
were commonplace in Medieval Europe. Similarly, tBbeamanist spiritual
tradition has used the singing of structurallyistabngs known as ‘icaros’ in
ritualistic contexts.

These musical traditions, while somewhat obscureghim modern Western
world, serve to demonstrate the ubiquitous penetradf drones and static

sounds in musical tradition. Some of these oldnmient traditions remain alive

-9-



today, and perhaps more importantly, they haveeseto inspire contemporary

artists and extend the use of drones into moderst&k® music.

2.3 Drone Minimalism and Modern Dronology

The practice of incorporating drones into a muitguof musical genres has
extended into the 0and 2% centuries and has become known as ‘Dronology’.
Although the early 20 century works of atonal composer Anton Webern
feature long tones, such as in the third movemerive Pieces for Orchestra,
Op. 10(1910-1913), any discussion of dronology in modé/astern music
invariably begins with La Monte Young's pioneeringprks of the 1960s.
Young has cited Webern and gagaku in particulghagprimary influences for
his groundbreakingrio for Strings(1958) (Strickland, 1993, p.125) — he also
famously claimed that this was the first piece ofsio to have ever been created

with nothing but long, sustained souh@slorgan, 1991, p.424).

Although the work of Young and his contemporariesry Riley and John Cale
is known as Minimalism, their music and that of theore prominent
minimalists Steve Reich and Philip Glass occupy twasiderably different
musical subsets Tony Conrad, another early pioneer of dronolobgs
described minimalist music (of the drone varietyy iavolving “tonality,
repeating modes, and long pieces with middles buémdings or beginnings”
(Textura, 2005).

This flavour of minimalism, known as ‘drone mininsah’, first began to
emerge in the late 1950s and early 1960s from thkfothia-based group
‘Theater of Eternal Music’ (or ‘Dream Syndicate’This ensemble, which

focused on the creation of drone-based music, decuYoung, Cale, Riley,

2 The variety of older music discussed in the presisection would appear to contradict this
claim. This piece is nonetheless a highly signiftcaork, and is often cited as the work which
founded minimalism (Strickland, 1993, p. 122).

% The minimalist musical genre emerged during th801® Early minimalism can be roughly

broken down into two subgenres: the drone varigtgcticed by Young, Riley, Cale and their
contemporaries; and a more tonal, repetitive angcstred variety pioneered by Reich and
Glass. A wider discussion of the latter type of imialism is outside the scope of this work —
Edward Strickland’sMinimalism: Origins(1993) provides such a discussion.

-10 -



Conrad and a number of others. The processes asadate these early works
varied from piece to piece, but typical traits udgd static instrumentation,
linear transformations (i.e. a lack of discretaustural sections), pure tuning
ratios (i.e. scales which are not used in conveati®Vestern music, such as
‘just intonation’), and non-Western musical inflees, such as Indian classical
music, Indonesian gamelan and other such tradiasrdiscussed in Section 2.1.
Noteworthy works produced by Young and the TheaterEternal Music,
around the same time agio for Strings (1958), include Young'sSecond
Dream of the High Tension Line Step-down Transforth®62) and the Dream
Syndicate’sThe Tortoise Recalling the Drone of the Holy Nurstzes they were
Revealed in the Dreams of the Whirlwind and theidins Gong(1964).

Although the work of the Theater of Eternal Musilather drone minimalists
is often dismissed as esoteric experimentation;gupies a far more prominent
role in music as far as dronology is concerneds TWark would inspire further

composition in the dronology mode in art music leiscin the latter half of the

20" century, and would even go on to inspire mainstread popular artists

from the 1960s onwards.

This influence was exemplified by the rock band WMedvet Underground, one
of whose members was violist and Theater of Etdvhadic founder, John Cale;
they frequently embellished their early works ire tmid 1960s with drone
sounds. Similarly, Kraftwerk — a hugely influentelectronic group — featured
several pieces which were based around static eargtHy instrumental drones
in their first album released in 1970. Other exaspf drone-inspired music to
emerge during the 1970s included Tangerine Dreawoile prog-rock album
Zeit (1972),and Brian Eno and Robert Fripp’s collaborative aanbalbumsNo
Pussyfootind1973) andevening Sta1975). Drones have also found their way
into the music of contemporary electronic artisgh@x Twin Selected Ambient
Works Volume 111994) and Boards of Canad@qfsair, from the Geogaddi
album, 2002). The ambient electronic group Minurded in 1997, uses
electro-acoustic and digital processing technigoesreate abstract meditative
soundscapes, such as in the album and title tMagk Right Herg2004).

-11 -



Dronology has not only inspired individual artisted composers, but has
heavily influenced, or even spawned, musical gemkesbient music, a super-
genre of several flavors of drone music, inherefdabtures static or drone-like
sounds, and has cross-fertilized and influencefiréift or derivative genres,
such as New Age music, ambient techno, and iDBIrone Doom’ or ‘Drone
Metal’ (a sub-genre of doom metal music) marriekrostrumentation with the
drone aesthetic. This little-known style featuresvd tuned guitars and basses,

lengthy static musical pieces and large amountisbbrtion and reverberation.

2.4 Spectral Music

A phase vocoder will be used to implement the Thlaftware — this digital
signal processing tool, discussed at length in @nap has served as one of the
many new means for creating a relatively recenhph@non known as spectral
music. A short introduction to spectral music, @sdelevance to this work, is

therefore now presented.

Spectral music emerged in the latter part of thentweth century, notably in the
works of Tristan Murail and Gérard Grisey. Spectnaisic is not limited to one
particular style or genre; its composition usualhaws from the composer’s
understanding of acoustics, the internal spectiraicsires of his/her source
material, and the understanding of how psychoatoystenomena may be
heard and interpreted by the listener. It has l#escribed by Murail as “an
attitude towards music and composition, rather tlaarset of techniques”
(Fineberg, 2000, p.2), and usually involves the wemodern computer
technologies to understand and exercise a uniqdepeetise form of control
over these musical spectra. This attitude therdloyve a composer to sculpt
individual sounds in a manner which allows for casiion modes which focus
on surface texture and new timbres in preferenamihwentional musical traits

such as rhythm and tonality. In this manner, spéatiusic may be seen in some

* IDM - ‘Intelligent Dance Music’, an electronic genwhich has particular inspirational value
in this work due to the widespread trend of usiofijvgare plug-ins for timbre composition in
the genre.
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cases as an aesthetic extension of the core mdtigieo of the drone
minimalism genre; and, notwithstanding spectral igisisinability to be tied
down to any single genre, the works of La Monte igand his contemporaries
have been cited as the precursors of spectral nideiterson, 2000). Fineberg
makes the following observations which commonlyt bot universally, apply
to spectral music:

The music has made colour into a central elemettteomusical
discourse, often elevating it to the level of pioat narrative
thread...orchestral fusion is often a main featuretofsurface
texture, so that individual voices are subsumetthénrichness of
the overall texture and colour...the basic sonic ien& often
sonorous and resonant giving the music a sort ofist@ glow
that comes from the coherence — in the domainesfuencies —
of the different constituent pitches...this music giynsounds
profoundly different than other musics.

(Fineberg, 2000, p.3).

The relevance of spectral music to the developmnoénthaw will be further
explored in Chapter 4, including an examinationthaf unique attributes of the
phase vocoder that make it suitable for creatiegstirt of sonic transformations
common to spectral music. Hence, the finalized Thaftware will exploit the
phase vocoder’s possibilities in order to enaldeaugte as a tool for the creation

of such music.

2.5 Drone Instruments

The means used by musicians to create static aytkdsounds are numerous
and varied. The instruments in question, like a#itablished musical
instruments, have evolved over centuries and hadettreir individual designs
influenced by the requirements of the types of mubey aimed to create.
Several examples of such instruments are now piexken

- The Didgeridoo. This is a wind instrument (or aerophone) of tidigenous

Australians. Played using circular breathing, icapable of producing only

a single pitch. However, interesting and uniquartaarics may be created
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and slowly manipulated by the contortions of thaypt’'s mouth and vocal

tract.

- The Bagpipes and Uilleann pipes These wind instruments, native to
Scotland and Ireland respectively, commonly featrdrone pipe’ which

accompanies the melody played by the piper.

- The Sitar and Tambura. These stringed Indian instruments incorporate

‘drone’ strings as well as conventional ‘melodyirsgs.

- The Bluegrass Banjo This instrument is a variation of the banjo; altgh
derived from an African instrument it is now printarused by American
Bluegrass musicians. The fifth string is typicdilyned to the pitch of the
next string at the fifth fret and is seldom frettekilst playing.

Although these examples are largely designed torparate or specifically
create drones, a large variety of other instrumeat® been used in imaginative
ways to also create drones. These include thenvimiiviola, such as in La
Monte Young's Trio for Strings (1958); muted trumpets, such as in one
particular interpretation of Young'Second Dreantomposition (performed in
1991); and the Jew’s harp.

As the 28 century progressed, musicians turned increasitmlyards new
electronic methods of sound production and thistpre naturally appealed also
to musicians who wished to create ‘dronal’ musi¢thdugh tape loops had
been used by Musique Concréeractitioners as early as the 1950s, in the
1980s drone artists such as The Loop Orchestranbémause reel-to-reel
machines and magnetic tape in order to create dmmsc, which, being “far
from static, ebbs and flows hypnotically... the loagge simple, organic and
very human” (Textura, 2005). The e-bow, a smaktetenagnetic device which

allows guitarists to create ‘infinite sustain’ witheir instruments, is another

® Musique Concréte — the practice of composing musing ‘found sounds’. The birth of this
movement was facilitated by the introduction of metic tape as a medium for sound in the
1940s.
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example of an electronic technology which has kareloped for the purpose

of creating drones.

As technology has progressed, digital music pradoctechniques have
eventually succeeded tape-based music and exténegabssibilities offered by
acoustic instruments. The potential means for tbetmnic production of drone
music have therefore mushroomed into a seemindiyite scope of tools and
techniques. Although composers have turned to so&wuch abMax/MSPand
similar musical programming environments in ordemtanually create drone
music, this research has found very little evidemdeprevious software
development with the sole purpose of facilitatifgst particular musical
aesthetic. Chapter 3 will now present the ‘StatéhefArt’ in existing software
products which, to some extent, explores the aratf static and drone sounds,
thereby setting the scene for the development ef thaw software; one of

goals of which is to address this deficit.
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Chapter 3 EXISTING WORK

3.1 Existing Products — The State of the Art

Digital computers have vastly increased the scopeneans of expression
available to composers and musicians who seekdaterstatic or drone-like
sounds. Software instruments and effects have ped@ new sound-producing
paradigm, and therefore a number of products wadafieve the exploration of
the static and drone sound phenomenon to variotentsxnow exist. These
products, which have been developed both commbrcadd academically,

vary greatly with regard to the type of aesthdtieyt produce, the digital signal
processing techniques they utilise in order to ter¢his aesthetic, the way in
which they allow the user to control the parametdrthe sound-manipulation
algorithms, and the manner in which they take @ntr allow the user to take

control, over the flow of the music.

This section will, therefore, initially present ansmary of a review carried out
of the overall goals and functionality of a reprasgéive range of the very large
array of ‘freezer software products currently dabie to the public.
Furthermore, this summary will draw attention toique and/or original
features of these products, thereby setting theestar discussion later in the

thesis on how this large feature set can be enddance

3.1.1 GRM Freeze

Freezeis a Virtual Studio Technology (VSTstandard plug-in created by the
GRM (Groupe de Recherches Musicale, 2006). It alawser to visually select
a piece of streaming audio and create very shopgsavhich may be changed in
size or temporal location using an X-Y controll@he visual aspect of the

control is useful as it allows the user to antitépattacks, decays and other

® A popular plug-in standard developed by Steinlvenich is compatible across a wide range of
host applications. The VST format is describedetad in Section 5.3.
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aspects of the amplitude in the music, and frebeentas desired. Its unique
mode of control over the time domain also allowsdiabtle, continuous timbral
change. Although the sound produced by Emeezeplug-in is not entirely

static, as the looping technique used is oftenldedihis product is nevertheless
highly popular among users (KVR Forums, 2006) aresgnts a fascinating

mode of control over the flow of the sound.

Ina-GRM FreezeStereo - 000: Init FreezeStereo
VST Presets Quiick ‘Help

B o
| S

Figure 1: The GRM Freezeinterface’.

3.1.2 Smartelectronix Ambience

Ambience (Jonsson, 2005) is a freely-available, flexibled ahigh-quality
reverberation VST plug-in which offers a ‘Hold’" foiion as a peripheral
feature. This feature allows the user to instaatig abruptly freeze the output
of the plug-in, producing an effect which is somatvkimilar to the initial static
sound aspired for by the plug-in which is the sab this researchAmbience
fails, however, to offer parameters which intendfdoilitate the subsequent
creation of drones. Furthermore, the ‘Hold’' effecay only be applied to the
‘wet’ reverberation output and not the ‘dry’ signhénce reducing its potential
scope for use. The digital audio manipulation tégie used by the author of

this plug-in to produce the ‘Hold’ effect is unknowit is suspected that a phase

" Each of these plug-ins requires a host applicatioorder to function — in these screenshots,
each plug-in is pictured within TobybelstiniHost (Section 6.5.Error! Reference source not
found.).
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vocoder is used, however, as there is a simil&gtge with the sound quality of

known phase vocoder-based plug-ins.

3.1.3 Spectral Monkeyage

Spectral Monkeyadeis a simple plug-in which allows for the productiof
innovative and abstract sounds through manipulabbnthe audio in the
frequency domain. It offers an ‘infinite timestretcfeature which may be
introduced instantaneously or gradually via a ‘$@édlurring’ parameter. This
produces an odd smearing effect that leads sedyntesthe impression of the
infinite timestretch. Other possible effects crdatey Spectral Monkeyage
include drastic pitch scaling, control of individumequency dynamics, and
further exotic effects which are not easily dessdibAn undesirable side-effect
produced by this plug-in, however, is a slight srmgpeffect on the sound even
when no effect is being applied. It would appeat 8pectral Monkeyageses a
phase vocoder technique in order to produce itscedf but this cannot be
confirmed as the anonymous author of the effectdcaot be contacted. It is
certain thatSpectral Monkeyagatilises a Fourier Transform, however, as it
offers the user a choice of window sizes and teples; this, along with the

slight audible smearing, would suggest that a pkaseder is used.

ASIO VST MEDI Presets Quick  Help

ko hann
40} 5
o]
[
> .
30 ‘L 1 [Hl‘?i o I:_I_L
J

pectral Monkesage & 0.15

Freszeh

Figure 2: The Spectral Monkeyagénterface.

8 No reference is available f@pectral Monkeyages it is no longer supported and does not
have an official website.
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3.1.4 Smartelectronix Sloper

Sloper(Schnetzler, 2006) is another VST plug-in whichdtions as a ‘stutter-
stretch delay’. The innovative control mode allavsser to create a ‘stuttering’
flow through the music by varying a variety of resslioop speeds, loop sizes,
delay parameters and scan rates; a static or siowiyng sound may be
achieved through careful manipulation of these mpatars. The plug-in takes a
tempo parameter, supplied by the host, and the-iod@ scan rate and pseudo

timestretch effects are dependent on this.

EAndreas @ Smartelectronix - 000: Init 1

Main ASID VST MIDI Presets Quick Help

[ 7= | [] [eFw iz
e

loopma input gain
[T &5 [ |

loopsize fesdback
|| [T |

mastersize decay

11 |2 ][ 129 m= [ |
bufferzze dry / wet

st bt - e it

sloper v0.9 .. ioplong .. a smartelectron:x member

Figure 3: The Sloperinterface.

3.1.5 Smartelectronix FlitchSplifter

FitchSplifter by the same author &oper is described as a “midi-playable
dynamic buffer freezer fx plug-in” (Schnetzler, 300 It uses a looping
technique to achieve a somewhat frozen soundntisvative interface (Figure
4) allows for a large degree of control over theaflof the sound. The input
signal is passed through an envelope detector ated K the signal exceeds the
gate threshold, the input is recorded in a buffed eepeated; the number of
loops being determined by user-controlled pararaetés host of other
parameters allow control over wet/dry mix, ‘smoatiii factor, bit reduction,

resonance, a 3-mode filter and envelope controé plug-in also allows the
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user to ‘play’ the buffered loops using a MIDI kewnd. FlitchSplifter, while
not aiming to create a wholly static sound or draesthetic, takes the
fascinating approach of trying to combine a ‘fréezesthetic with a ‘glitcfi

aesthetic, and the results are unique.

Ehndreas @ Smartelectronix - 000: Init 1

Main ASID VST MIDI Presets Quick Help

I

| At [|cy | se= Jsmtjwet | 5= |[rep

0 | |oFF E

OFF

e bl et i
[ WigiNot=-Centrol GFF | [Note->RecordStart OFF | ioplorlg

Demo Version flitchSplifter

a smartelectron:x member

Figure 4: The FitchSplifter interface.

3.1.6 CDP Phase Vocoder plug-ins

This untitled suite (Dobson, 2001) consists of éhsemple experimental VST
plug-ins: pvtran’, ‘pvexag’and pvaccu: The initial work around which these
effects are based was originally created by Tr&V@hart and his collaborators
for the Composer's Desktop Project (Miranda, 2802nd later adapted for
streaming purposes in a VST environment by Riclzobdson (Dobson, 2001).
Although none of these aims to create a freezeteffieey are included in this
review as they all utilise the phase vocoder irative and innovative ways —
the phase vocoder is the digital signal procestgopnique used to implement
the Thaw plug-ins; it is discussed in detail in Qea 4.pvtranis described as a

® ‘Glitch’ in this context refers to an intention@lbeit seemingly chaotic) musical aesthetic, as
opposed to the undesired sounds caused by equipgngmbgramming errors, which will be
mentioned later in this thesis.

° The phase vocoder contained within the Compogsetsktop Project package is a remarkable
piece of work; it contains over 60 tools for thempalation of sound using the phase vocoder.
This is explored in further detail in Section 4.3.5
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‘simple pitch shifter’, and performs this basic €tion with excellent sonic
results. pvexagexaggerates the spectral envelopeaccu performs ‘spectral
accumulation’ with glissando. The latter plug-in, particular, was of interest

due to its inherent potential for producing slowwing or near static sounds.

The further importance of this software’s role e tdevelopment of Thaw is

documented below, in Section 3.1.8.

3.1.7 Further Examples

- Max/MSP groove~ — an object for the modulaMax/MSP musical
programming environment which operates using thmesgrinciples as
GRM Freezeand produces similar results — groove~, howeveesdnot

offer an effective interface or suitable periphe@htrols, asreezedoes.

- Ohmforce Symptohm — a comprehensive synthesis plug-in instrument
whose features include the ability to create azieeffect using granular
synthesis. This is a tedious, manual process hawawe it is not the sole

application of the software.

3.1.8 In Summary

This range of software products utilise a broadyeaaf techniques, interfaces
and musical aesthetics and share the common agtribiu being capable of
creating static sounds to some extent, but witlyingrdegrees of limitation.
This is understandable given that these products hat been designed with
the sole intention of creating and/or manipulatstgtic or drone sounds. The
notable exception is perhaps GRMeeze whose ability to sweep backward
and forward through a time-domain signal enable® ijpproduce drone-like
sounds. However, deficiencies in achieving theicgthibne aesthetic have
already been highlighted iRreeze— notably, the aesthetic drawbacks of the
looping technique and the lack of potential relévsonic modifications which

may be performed within the loops themselves
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The examination of the CDP Phase Vocoder plugkogiever, had a number of
valuable advantages. Firstly, they demonstrateduttigue power of the phase
vocoder and provided an incentive to further exlivis power. Secondly, the
source code for this plug-in suite is freely avaléaand reproducible under the
GNU Public Licence (GPL) (Free Software Foundatid@91). This offers a
unique opportunity for interested parties to expldre workings of the phase
vocoder in a VST framework, either at a generaothtical and functional level
or at a deeper, mathematical level. The freedomh@®iGPL also allows for the
modification and/or redistribution of the softwar€his source code, based
around an implementation of the Computer Audio BedeLaboratory (CARL)
phase vocoder (Loy, 2002), was to prove invaluabie founding the
development of the Thaw software. Its role is désed in further detail in
Section 4.3.5.

This review therefore set the scene for a studyhow the more desirable
attributes of these products could be combinedeldged and/or refined in
order to design a piece of software whose primagl gvould be to create and
manipulate high quality static and drone soundsti@e 3.2 will now discuss a
consideration of which digital signal processinghte@ique(s) might be used in

order to achieve this goal.

3.2 Potentially Suitable Signal Processing Techniques

As the authentic digital reproduction of a givestant of sound is impossible,
as explained in the Introduction of this thesis final aural output of the
proposed software product merely needs to be per@dp convincing.

Although the sound created by existing ‘freezers’ subjective and best
described in qualitative terms, it is at least sseey to preserve amplitude,
pitch and timbre in order to recreate a convincsogind, depending on the
authenticity and overall aesthetic of the sound ihaspired to. Whereas pitch
and amplitude are relatively straightforward to mea and reproduce, it is well

documented that the perception of timbre is higipendant upon ‘timbre
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envelope*! (Howard & Angus, 2001, p.222). For example, resedras shown
that it is difficult for a listener to differentiatbetween instruments as diverse as
the piano and the trumpet if the attack and/or yemations of the sound are
removed (Howard & Angus, 2001, p.221). This poamderstood role of the
time-domain in timbre perception may pose a chgkegiven the static nature
of the desired sound.

According to Grey (1977), timbre does not have a-dimensional subjective
scale, such as those scales on which loudness ameiyed pitch can be
measured on. Changes in harmonic relationshipshén time domain are,
therefore, vital in preserving timbre. Pollard alhsson (1982) described a
‘tristimulus’ method which is an approximate meafdracking the changes in
the spectral content of sounds over time; in othenrds, an attempt to quantify
the temporal dynamics in timbre. As such estabtisireans of perceptually
describing timbre are dependant on time, the implgation of the proposed
system needs to attempt to perceptually bypassréigigirement for dynamic

change.

The reproduction of pitch is also highly dependamtthe time domain — pitch
cannot be measured instantaneously due to its dierimature, and

psychoacoustic experiments have identified that ltheman auditory system
must be exposed to a sound for at least 20ms (approorder to successfully
identify pitch. The chosen signal processing teghaimust therefore also allow

for the identification of pitch.

The success of faithfully capturing a snapshot wigieeserves pitch and timbre
may lie in the careful choosing of one of a numbikesuitable audio analysis,
manipulation and reproduction techniques. The pistiag examples explored
in the previous section utilise a variety of suethiniques to achieve their goals.
Each of these, as well as a number of other patlesttiategies, has advantages

and drawbacks which will now be discussed.

™ Timbre envelope - the variation of spectral enadigyribution (i.e. frequency components of
a sound) over time.

-23-



3.2.1 Looping

This technique, used by GRFMreezeand Max/MSPgroove~ as well as many
other products, creates very short loops withinstineaming audio to create the
freeze effect. While this technique is relativelsngle to implement and does
not require large amounts of computing power tdquar its function, its use
for creating static sounds is not quite convincifbis is due to the fact that,
depending on how well the technique is applied,|ttops may contain ‘rough
edges’. This causes audible artefacts, and an gsjore of periodicity which
may not be desirable in our context. This ‘glitcleffect may be successfully

avoided, however, perhaps by applying a featune kiwindowing™.

3.2.2 Granular Synthesis

This is another time-domain technique which isdissimilar in principle to the
looping technique. Tiny ‘grains’ of sound of spémif quantity and duration are
randomly assembled in the form of either raw, sgsited sounds, or samples
taken from an input signal and reassembled in aneramvhich may be
determined by the user/programmer; the manner inchwhhis is done
determines the type of resulting sound. Althougiumber of existing granular
synthesis-based products which are capable of phoglifreeze’ sounds exist,

none of them are dedicated solely towards credlfiisgeffect.

3.2.3 Time Domain Harmonic Scaling

Time Domain Harmonic Scaling (TDHS) is another tidmmain technique
commonly used for pitch/time scaling. It is compigtaally quite fast, as no
Fourier Transforms are used. Its time-stretchinlg fonctions by obtaining the
fundamental frequencydff of a sound, and subsequently overlapping or eross

fading different sections of the sound in order deate time-stretching.

12 A technique used by the phase vocoder which regtieamplitude at the beginning and end
of a portion of analysed audio. This techniquedsatibed in more detail in Section 4.2.6.
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However, it only works well with well-pitched monlepnic sounds. Also, it
commonly produces poor quality results and its i for ‘infinitely’ time-

stretching a piece of audio seems to be unexplored.

3.2.4 Linear Predictive Coding

Linear Predictive Coding (LPC) analyses a sounddlsg human speech) and
creates a data representation of its spectral obriteseparates what it perceives
to be noisy sounds (or residue) from harmonic ¢tcheid sounds and creates
separate representations of these. Timbre, pitchrhythm can therefore be
separated and treated independently; time-stregchimd pitch changing are
possible applications of this feature. It is comigonused for
compression/resynthesis of telephone signals. Adamvever, the resulting
sound quality is quite low and the potential ofterby this technique for

achieving the desired freezing function is unknown.

3.2.5 Phase Vocoder

The phase vocoder uses Fast Fourier Transform®riged audio signals to
frequency-domain representations where both frequand phase information
are preserved. These representations may be matg@guwihile in the frequency
domain, and then resynthesised. If the frequeniynmation from the sound is
interpolated at resynthesis at a different rate thavas during analysis, time-
stretching without pitch change may be achievetie©Otinusual effects may be

achieved by manipulating the signal within the fregcy domain.

Like all the other techniques discussed above,ptm@se vocoder introduces
audible artefacts (or ‘side effectS)during resynthesis, although these effects
may not be as severe as those produced by the tettteriques. They may be
kept to a minimum by carefully choosing suitablegpaeters; different phase

vocoder characteristics (discussed in Chapter #)d#terent types of sounds.

13 Usually reverberation and a slight audible ‘sngitiin the case of the phase vocoder.
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The phase vocoder is quite powerful in its poterdiad also produces fairly

consistent results regardless of the type of sdanuly processed.

3.3 Choosing a Signal Processing Solution

All of the potential solutions discussed above offarious advantages and
disadvantages. In the worst cases, the use ofrtteedomain harmonic scaling
or linear predictive coding techniques for the tiogaof static and drone sounds
seems to be previously completely unexplored. Afrarh their previous uses

as time stretching and time compressing toolsgetappears to be little evidence
available to support the notion that there is gpotential in these techniques
for producing our desired aesthetic. It followsrdfore, that the use of one of
these techniques would be unwise. Similarly, thebtes produced by the
granular synthesis technique may be unpredictablengthe hugely varied

nature of sounds which may be fed into the plugdnanular synthesis may

therefore not be the best option for this project.

The remaining techniques — the phase vocoder aming methods — appear to
be the most suitable; at least, they have been use@ than any other
technique in previous implementations of softwareeters. The looping
technique offers the significant advantage of bewegy straightforward to
implement. This may allow the programmer to plaee lboping in a control
context of high complexity, which could allow foenry innovative and hands-on
means of control (as demonstrated byRheeze SloperandFitchSplifter plug-
ins in particular). Within the actual loops of sduhemselves, however, there is
not a large amount of scope for innovation. Furti@e, unless they are very
carefully implemented, the loops could give thecpered impression of
periodicity; this would not conform to the initigtatic’ aesthetic that the goals

of this work call for.
The phase vocoder, on the other hand, has thet@@btem create high fidelity

static sounds regardless of the type of sound wisclheing analysed, as

demonstrated in particular by tenbienceand (as far as can be to8pectral
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Monkeyage plug-ins. Perhaps more significantly, the  unique
amplitude/frequency data representation used bypkiase vocoder allows for
unparalleled opportunities for the creation of reawd innovative types of audio
spectral manipulation. The fact that it is lesslesgd than more conventional
signal processing techniques means that its powsr bbe largely untapped,

allowing for a great degree of potential innovatinrhis work.

The phase vocoder does offer disadvantages, o$epitiis notoriously difficult
to implement, especially in real-time systems. Timgy not be a significant
problem however, as the coding of a phase vocoden fscratch would be
outside the scope of this work. It is also hightynputationally expensive, due
to the large number of Fast Fourier Transforms u$ad is becoming less of a
problem, however, due to the relentlessly increaspower of modern

computers.

Despite these disadvantages, the background résedcc potentially suitable

signal processing techniques outlined in this sectndicated that the phase
vocoder was the most promising solution for creptthe Thaw software,

largely owing to its potential for manipulating sw$ in new and innovative
ways that will be outlined in further detail in $ea 4.3.3. As a more detailed
description of the phase vocoder is necessary deroto understand the
development and workings of the Thaw software, leerfunvestigation now

follows in Chapter 4. This draws on a large bodywvofk exploring the use of

the phase vocoder which has emerged in recent dec@acluding Dolson,

1986; Dobson, 1993, 2001; and Bernsee, 2005).
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Chapter 4 THE PHASE VOCODER IN DETAIL

Any understanding of the inner workings of the Thawaftware requires
knowledge of the workings of the phase vocoder. elmw, the implementation
of this software has not necessitated in-depthsitigations or manipulations of
the inner workings of the phase vocoder or the Famtrier Transform.
Therefore, although a seemingly lengthy descriptibits workings is presented
here, the following discussion barely scratches shdace of the extensive
creative, engineering and mathematical work whiak been carried out on the
phase vocoder to date. Although a lengthy studgheffundamentals of digital
signal processing and the phase vocoder was uidarthy the author in
preparation for this work, detailed analyses of mh@thematical and physical

aspects of the nature of the phase vocoder renugside its scope.

In addition to its relevance to the developmentThaw, it is hoped that the
scope of the description of the phase vocoder ptedehere would be of
particular interest to computer musicians and @ogners; while the use of the
phase vocoder in hon-conventional musical appboatwas largely untapped in
the past (Dolson, 1986), interest in the technigppears to have grown in

recent years.

Following an introduction to the history and fulctality of the phase vocoder,
a summary of its role in manipulating and creatimgsic will be discussed in
this chapter. It will then conclude with a numbdr examples of previous
software implementations of the phase vocoder. &suconsulted in preparing
this presentation of the phase vocoder include &&Dobson’sThe Operation
of the Phase Vocodébobson, 1993), Stephan M. BernseB'e DFT “a Pied”
(Bernsee, 2005) and Mark DolsorTeie Phase Vocoder: A Tutori@Dolson,

1986), as well as many others.

-28-



4.1 History of the Phase Vocoder

The phase vocoder has had a long and distinguislsadry as a tool for the
analysis and manipulation of digital signals inaage of engineering, musical
and other applications where the frequency-domaalyais of periodic signals
is necessary. First described in a technical pageFlanegan and Golden of
Bell Laboratories (Flanegan & Golden, 1966), theaggh vocoder extended
Homer Dudley’s Channel Vocoder (Dudley, 1939) bgalibing both frequency
and phase components of an analysed signal. Thet tapplication of this new
technique was to be the encoding of voice signatsréducing transmission
bandwidth. Unfortunately, the fact that the anaydata produced by the phase
vocoder was much greater than the original timeaansignal meant that it

was unsuitable for this purpose.

However, the advent of powerful digital computergamt that the phase
vocoder was later adopted as a digital audio psiegstool. Many
contemporary composers have experimented with ssecfiware phase
vocoders, leading to the revelation of radical neassibilities for the
manipulation of sound. It has become one of thetraogormly reliable and
flexible techniques for performing time scale mamifions (i.e. time stretching
and compressing) of digital audio. Subsequenththanlast several decades, a
variety of software implementations of the phaseod®r have been developed.
Such implementations, and potential future usedhef phase vocoder, are

presented in detail at the end of this chapter.

4.2 Functionality of the Phase Vocoder

4.2.1 Overview

The operation of the phase vocoder (Figure 5) acoutwo stages: analysis,
whereby a time-domain signal is converted to a tspecepresentation, and
resynthesis, whereby the reverse process is cawigd The scope for

manipulation of the analysis data between these dtages is one of the
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attributes of the phase vocoder that gives it dgeptial for creating unique

audio manipulations.

The phase vocoder steps through the time-domaimakigp be analysed in
overlapping steps, or ‘windows’. During the anadysf each window, a bank of
band pass filters uses Fast Fourier Transformsdate frequency/amplitude
representations of the spectral content of the ewndFrequency information
may hence be manipulated without affecting the mapcharacteristics of the
signal, and vice-versa, before similar overlappimmdows use a bank of

oscillators to resynthesise the original or modifsggnal.

Input (time
domain digital
signal)

\ 4 A 4 A 4 A\ 4

Filter O Filter 1 Filter 2 Filter n Filter bank
(FFT analysis)

Analysis data
(amp/freq pairs)

Osc 0 Osc 1 Osc 2 Oscn Oscillator bank

T~

Output (time
domain digital
signal)

Figure 5: A simple model of the Phase Vocoder (adégd from Cunningham, 2003).

4.2.2 Filtering

During the analysis stage, a bank of band pasgdilanalyses a time-domain
digital signal. This series of filters must accontiate all frequencies which are
present in the incoming signal and their centrguencies are therefore spaced
equally from OHz to half the sample rate. The imdlial band pass frequency

response must be identical, ensuring that the dveeguency response of the
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filter bank is flat. This means that no frequenantd may be reproduced
disproportionately and the resynthesised signal beagroduced as faithfully as
possible. The output of these filters consists afrg of data (or bins)
representing amplitude and frequency. The manipumatf these bins will be

discussed presently.

4.2.3 The Fourier Transform

A Fourier Transform is used to implement each dlgititer. This method is
based on principles developed by Jean Baptisteidtgi768-1830) which state
that any periodic waveform, regardless of its origi degree of complexity, can
be represented by the sum of a set of harmonicalfed sinusoidal waves. In
the case of harmonically related sine waves, eanlevis said to be an integer
multiple of the fundamental frequency. The harmosticictures of common
waveforms such as square, triangle, saw-tooth,sandn, as well as arbitrary
complex signals, can therefore be measured wiigladegree of precision. The
principle was originally intended to deal with tle®nduction of heat in

materials.

The Fourier Transform detects the magnitudes ofrdgriencies present using a
pattern matching method, analogous to the add#ywehesis technique of ring
modulation. When two sine waves are multiplied, thsulting frequencies
represent the sum and difference of the combingultifrequencies. For
example, if a signal of 440Hz is multiplied by arsal of 460Hz, the output
consists of a sine wave of 900Hz and a sine wave0efz. If the inputs are
equal, then the difference is zero and the outpuosists of a sine wave whose
frequency is equal to twice the sum of the inputwidver, it should be noted
that a DC offset (Figure 6) is introduced — thath® resultant signal lies above
the zero line. The magnitude of this offset is e proportional to the
amplitudes of the input signals. Therefore, if miehese inputs is at a fixed
reference level, the amplitude of the other maydbéermined. The Fourier
Transform exploits this principle by sweeping ttghuhe waveform which is to

be analysed with a ‘reference’ sine wave of fixadphtude and gradually
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sweeping frequency. The resultant, continuouslyctfiating amplitude is
recorded. Any non-zero amplitude in this signalgé$lathe presence of a

corresponding input harmonic at that frequencyamglitude.

P AN

N //\\ / /\\ N\ \\/ \ \/ \/ \/ \

Figure 6: DC offset in the wave to the left is zeradhe DC offset is positive in the wave to
the right

4.2.4 The Fast Fourier Transform

As a truly analogue, continuous analysis sweep dvolle hugely

computationally expensive and unsuitable for usa iigital system, the Fast
Fourier Transform (FFT) is used. This streamlineztsion of the Fourier
Transform discretely samples the analysis wavefatnmultiples of its own

fundamental frequency. As long as this sampling iathigh enough, a good
spectral analysis of the signal may be reprodugettido FFT.

4.2.5 The Filter Bank

The operation of the FFT is similar to that of ak®f finely tuned band pass
filters, and is therefore ideal for what is reqditey the phase vocoder. As the
overall bandwidth of the filter bank and the indwal frequency responses of
the individual filters are predetermirfédhe only factors to be decided in the
design of the filter bank are the number of filtéosuse and the frequency
response of each filter. If a high degree of prenisn measuring frequency is
required, the bandwidth of each filter must be amraow as possible.

Correspondingly, the number of filters required dover the audible range

becomes larger.

! That is, the bandwidth must correspond to theldediange of frequencies — approximately
20Hz-22.5kHz — and the individual frequency respsnsiust be uniform.
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A bank of filters with bandwidth of, for exampleQi2z, would provide adequate
coverage at 440Hz, where 20Hz corresponds to appabely one semitone.
Spaced linearly, however, 1000 such filters wouéd rbquired to cover the
audible spectrum. At 4kHz and above, this 20Hz ltgmm is unnecessarily
high; and at the lower end of the spectrum, 20Heza@ver up to an octave and
is therefore not high enough. This problem occugsalise of the logarithmic

relationship between frequency and pitch.

In this manner, the FFT is unfortunately not verpreomical®. Simple periodic
waveforms may be analysed efficiently enough, asapbonic sounds do not
contain partials in close proximity to each othEne harmonic content of the
spectra of arbitrary complex sounds (which comptige input sounds of the
phase vocoder the vast majority of the time, astledere musical applications
are concerned) is much more uncertain, however,thekfore the sideband
frequency responses which are unavoidable artefs#ictee band pass filters
become more unpredictable and potentially problemdhput frequencies
which do not correspond exactly to the centre feeqy of any of the band pass
filters will register in the outputs of periphefdters; this effect is known as
‘spectral leakage’ and its effects may be overconye ‘windowing’ the

incoming analysis data.

4.2.6 Windowing and Overlapping

Whilst the amplitude of a piece of digital audioyrtae measured at any given
instant (i.e. by measuring the amplitude of a €rmgdmple), the instantaneous
measurement of frequency may not be achieved dits fmeriodic nature. As
discussed in Section 3.2, psychoacoustic expergnbave identified that it
takes approximately 20ms for the human ear to atelyr identify a pitch
(Howard & Angus, 2001). Therefore a ‘window’ oflaast this size is generally
used to analyse the signal. At a sample rate dfké#z, 20ms corresponds to

882 samples. As a power-of-two window size is galhemore efficient in FFT

15 Unless the frequency content of the input sigadriown beforehand, in which case the filter
bank can be ‘tuned’ to perform an optimal analygishe prominent frequencies in the signal.
However, this is not the case in most applications.
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implementations, a minimum window size of 1024 skampis therefore

commonly used.

PAAADANA AN
YA

Figure 7: FFT Windowing

Such a window is considered a slice of sound: &ulia@alogy is to think of an
FFT analysis window as a single frame of optidah f a single component in a

sequence that, when reassembled, will form a ceatis moving picture.

The problem with the rectangle-shaped window iruFedr is that its edges may
fall on any sample. The resulting abrupt changesanmplitude may cause
audible clicking in the resynthesised sound, asstithted in Figure 8. As the
FFT considers the windowed analysis frame to bectgxane cycle of a
periodic waveform, the discontinuity in the cyckused by the irregular cut off
by the window edges of the sine wave (in this exXainwould lead to a

significantly inaccurate resynthesis with unwarg&tkbband responses.

>

Figure 8: A rectangular window causes unpredictablehanges in amplitudes and hence
audible glitches in the output sound

The solution to this problem is to ‘squash’ the #itages at the edges of the
analysis window by using a different window shapkis may be thought of as
a symmetrical amplitude envelope which is appl@éthe window. A number of
various types of windowing envelopes are used, utliog rectangular,

Blackman, Kaiser, Bartlett and Hamming, and othBifferent window types
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are suited for different purpos@sin terms of reducing the emergence of
unwanted spectral artefacts, most of these designsuperior in performance
over the rectangular window.

In Figure 9, a brief graphical comparison of spcanalyses of the same time
domain signal (top) using several different windtypes is presentéd In the

spectral analyses, the amplitude of the signapsasented on the vertical axis,
and frequency on the horizontal. In each analgsigak is produced at 440Hz;
however, it may be observed that the Rectanguladew shape produces far

more sideband responses than any other window:

Time-domain representation of 440Hz Signal:

Spectral analyses of the signal:

Rectangular Triangular

Blackman Blackman-Harris

® The Thaw software uses a Hanning window by defaadttially due to its suitability for

analysing different types of sound and partiallye do the limitations of the CARL phase
vocoder which was used.

" These spectral analyses of a 440Hz sine waved& wiere generated in Sony Sound Forge
using a phase vocoder of window size 1024 and apest 75%.
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Hamming Hanning

Figure 9: A comparison of window performance in artefact redwtion.

Another factor to be determined in the implementabf the phase vocoder is
the overlap factor: in order to reduce the traddsefween frequency resolution
and time resolution when determining the windowgten the successive
windows in the FFT analysis are overlapped. Fonta, for a window size of
1024 samples, successive FFTs may be applied tdowm starting at 0, 64,
128, 192 samples, and so on. The analysis rakeiisfore multiplied eightfold,
leading to a much greater frequency and time résolsl and, of course,

increased computational demands.

4.2.7 Phase

If the relative phases of the different amplitudeduency bins are not known,
the reconstruction of the overlapping windows dgritne resynthesis may
produce undesirable clicks and glitches, or in wust case, may bear very
litle resemblance to the original signal. If thdase vocoder is simply
reproducing exactly what it has analysed, thisoisam issue as it already has all
the information it needs. However, a straightfomvamalysis-resynthesis is
somewhat musically pointless — if the spectral dataate of resynthesis is
modified, as it usually is in musical applicatiasfsthe phase vocoder, then the

phase vocoder needs to supply additional phasemiafion.
The phase of a signal relates to the ‘start pamtthe cycles of the waves

describing its frequency components; one cycle3@0°, is equivalent to a

single wavelength. A sine wave and cosine wave, elaample, begin one
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guarter of a cycle (or 90°) apart — the sine waveansidered the ‘imaginary’
part of a signal and the cosine represents thd’ ‘peat. A mathematical
complex number stores each part. Plotted on an ¥rph, the real and
imaginary parts may be measured from the origintarms of amplitude
(distance) and phase (angle). This ‘polar’ reprizg@m is preserved by the
phase vocoder and is central to the operation ef RRT and inverse FFT
(iIFFT).

Figure 10: Single cycles (360°) of a sine wave,tledind cosine wave, right. The signals are
90° out of phase.

4.3 The Phase Vocoder’s Role in Digital Music

Once the processes which have been described @beveomplete, the phase
vocoder has all the information it needs to perf@mesynthesis. It is at this
point that the musical uses of the technique becappmarent and the phase
vocoder therefore becomes much more interestintheocomputer musician

(Laroche & Dolson, 1999).

The most common use of the phase vocoder in muspgaications to date has
been the enablement of the independent manipulatiogither the temporal
characteristics or pitch characteristics of a sodi methods used to achieve

these utilitarian effects are now described briefly

4.3.1 Time Scaling

Resynthesis, the final phase of the operation & phase vocoder, is
subsequently carried out by a sequence of overlgppindows; within each

window a bank of oscillators produces the specifiedjuency components at
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the correct amplitudes. Time-domain scaling may dohieved by simply
changing the rate of overlap between these suseessndows. For example, if
the resynthesis windows are interpolated at a faate than the rate at which
the analysis windows were overlapped, time compass achieved. The
frequency/amplitude/phase information describing tiriginal signal is left
untouchedf and the time-stretched or compressed reconstrugied therefore

retains most of these original characteristics.

4.3.2 Pitch Shifting

Pitch shifting of a signal upon resynthesis is $ymgn extension of the time
scaling technique. After the overlap rate has bevanged, the output may be
resampled to a specified rate, thereby restorirgg time domain factor but
changing the pitch without further degradation bk tsignal. Significant
research on improving the quality of the phase d@ecan pitch shifting is

ongoing, but this work is outside the scope of tigsussion.

4.3.3 Further Effects and Future Possibilities

Although time and pitch modifications have been phienary uses of the phase
vocoder in digital music to date, a variety of otlexotic effects have been
achieved. It is important to note that the freqyedomain representation used
by the phase vocoder offers a very new, unique pogerful means of

manipulating sound. Such frequency domain manifmrat would not be

possible with a lesser signal processing technidue examples of phase
vocoder implementations for achieving such effgeesented in this work only
serve as demonstrations of the capabilities oteébknique; the possibilities for

future work doubtlessly extends far beyond these.

18 Unless desired otherwise; see Section 4.3.3 fam@les of how this information may be
manipulated with interesting musical consequences.
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Such innovative manipulations include “chorusingarrhonising, partial
stretching” and other radical modifications, ddsed by Laroche and Dolson
(1999). The software suite developed by the Compmdeesktop Project
(Wishart, 1994; Dobson, 2001) includes a phase decavhich has been
adapted to perform hundreds of similar feats suscis@ectral exaggeration’ and
‘spectral accumulation’. Some of the software effetiscussed in Section 3.1
(e.g. Spectral Monkeyageprovide further examples of the types of audio

manipulations that the phase vocoder has beentaszdate.

Apart from the variety of new sounds produced by phase vocoder, another
remarkable facet of its adoption by composers fees an attempt to develop
alternative means of interfacing with the functiltyaof the phase vocoder, or
controlling the flow of the music with a phase vdeo which has been

inherently ‘automated’ to an extent.

An example of such a new means of interfacing wiith phase vocoder is
SPEAR? (Klingbeil, 2005), a stand-alone program whichlgses a sound file
and allows a user to graphically manipulate indad partials (frequency
components) before dynamically resynthesising theund. IRCAM'’s

AudioSculptperforms a similar function using a phase vocaddled SuperVP
(Bogaards, 2005). These programs, which do nottifmman real time, have
created a stir of interest amongst the electromd alectro-acoustic music
production community in recent years due to thet félcat such a
multidimensional and graphical means of frequenoptrol is so new and

innovative.

4.3.4 Software Implementations of the Phase Vocoder

Thanks to efforts by composers and programmersyacé implementations of
the phase vocoder now appear in many forms — arhamgsy, these developers
have included the Composers’ Desktop Project (Wisti®94), Dobson (1993,
2001), Dolson (1986), Bernsee (2005), and IRCAM g&ards, 2005). The
outcomes of the work of these parties include yr@skilable C++ source code,

9 SPEAR- Sinusoidal Partial Editing Analysis and Resystbe
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hands-on examples i@sound Pure Data and Max/MSP (Figure 11), along
with countless mainstream audio applications andj-pis. Examples of such
applications includeSPEAR(Figure 12) andAudioSculptas described in the

previous section, an8ipectral Monkeyagas described in Chapter 3.

B14.sampler.rockafella.pd - C:/Program Files/pd/doc/: dio

Fle Edt Put Fnd Windows Meda Help

“elassic” time stretching with the phase vocoder
wee v alter the playback rate of ow recorled @t
data, without ¢hanging the piteh of the sound!
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[~ 0.5
f-o9
start recording with Sovalels iipad [tabreada~ table23] [oq] ab1d)

soundfile playback

Here, rather than ask you to push the read pointer back and
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This makes it
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it in computing the frequemcy of the origimal phasor~ at

right.
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for added convenience, and delayed multiplying sample

location by the sample rate (44100) until the last moment,
so that calculations using "read-pt" and "chunk size” can
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Figure 11: Phase vocoders iMax/MSP (left) and Pure Data(right).
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Figure 12: SPEARs innovative interface, which allows control ovetindividual partials.
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4.3.5 The CARL Phase Vocoder and the Composers’ Desktopréject

An implementation of the phase vocoder of particuigerest in this work is the
Computer Audio Research Laboratory (CARL) phaseodec (Loy, 2002) and
its subsequent use by the Composers’ Desktop Prp£zP). Trevor Wishart

(Wishart, 2000) and a number of collaborators utoddér the development of
this large phase vocoder-based system at the IR@AMo research institute
from 1986. Basing his work upon the CARL impleméota of the phase
vocoder, Wishart implemented a number of softwarstrtuments’ which

manipulated the audio spectrum in ways never aeldidefore: these included
“stretching the spectrum, spectral morphing, watves@nipulation, grain

manipulation, sound shredding, spectral cleaningecsal banding and

brassage” (Wishart, 2000), and many more.

The CARL phase vocoder and CDP software was ladeptad by Richard

Dobson (Dobson, 2001) in order to function in riale. Dobson also

developed the VST versions of the CDP Phase Vocpllgrins described in

Section 3.1.6. The opportunity to learn the intiea of, and later experiment
with these open-source plug-ins, offered an exoelktarting point for the

development of the Thaw software. The design of thinow documented in
Chapter 5.
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Chapter 5 SOFTWARE DESIGN

This chapter will focus on the conceptual aspedtsthe Thaw software
development lifecycle. Although many details of ttesign have naturally
evolved and changed during the course of the dpwedat, a number of
fundamental aspects became fixed from the stathefdesign process. These
include the choice of digital signal processinguioh — the phase vocoder had
already been chosen for this task, as discussefleation 3.3. Other such
practical aspects of the software development gycas well as the reasoning

behind their selection, are now documented inchapter.

5.1 Platform

The primary operating systems used on modern carpudre Microsoft
Windows, Apple Macintosh and Linux. All of thesaftibrms are used to some
extent by computer musicians and, although Linuxemgoying a growing
popularity for computer music purposes, Windows &fac attract the vast

majority of users.

Microsoft Windows was the platform chosen on whighinitially develop the

Thaw software. Windows was chosen mostly for regssrconvenience; these
include the author’s pre-existing familiarity witWindows programming, and
the fact that Windows enjoys a far greater levedugdport from the pre-existing

software packages used during the developthémn either Mac or Linux.

Notwithstanding these considerations, the choicgeotlopment platform is not
central to the completion of this work — all of thérementioned operating
systems mentioned support the same signal progessainiques and sound
production capabilities (theoretically, at leastidathe potential performance

differences attainable across the systems are lususgligible. The

% Notably the VST Software Development Kit (Secti6r8) and the CARL phase vocoder
(Section 4.3.5).
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convenience of using Windows as a developmentgstatillowed the software
development work to focus on the important, interaspects of the design.
Furthermore, the ‘porting’ of the software to aceoadate Mac and/or Linux

users remains a future possibility (Section 8.3.3).

5.2 Stand-Alone vs. Plug-In.

Sound creation and manipulation software typicédliyes one of two forms:
stand-alone, or plug-fh Stand-alone applications offer the advantage atf n
requiring a host within which they must performitifenctions. Effect hosting
applications, musical sequencers and waveformngditols generally take the
form of stand-alone applications. The plug-in fotmaowever, offers large
advantages over stand-alone applications, partlgweith regard to software
whose function is to create or manipulate soundéhSiug-in ‘instruments’ and
‘effects’ may be implemented within complex softe/atructures which allow
for a high degree of flexibility in the routing signal and control paths. Effects
may be chained together in series (as ‘Insert'céfjeor in parallel (as ‘Send’

effects) within the same host application, and iegutomated.

Audio processing plug-ins are available in a wideety of formats, which vary
with regard to which features and operating systdrmag support. Such formats
include DirectX for Windows, Audio Units (AU) for Btintosh, and Linux
Audio Developer's Simple Plug-in APl (LADSPA) forinux. However, the
most popular plug-in format (Steinberg GMBH, 2006)use today is Virtual
Studio Technology (VST). For a number of reasortgcivare now discussed in
Section 5.3 below, it was decided that the Thawnsok would take the form of
a VST plug-in.

2L A large body of recent audio software developnies begun to blur the lines between these
formats, however. Increasingly, commercial venagoesmaking their products available in both
stand-alone and plug-in formats. Furthermore, thiaber of modular music systems is on the
increase; these allow for a huge degree of flagyhiih the interoperability of different products
and the routing of audio signals, further breakdayn the traditional host/slave paradigm.
Examples of systems which support such modulacttring include Cycling '74Max/MSF
Native Instrument&Reaktor Propellorhea®ReWire PlogueBidule, and many others.

22 Automation refers to the ‘recording’ of parametalues over time, allowing for non-real
time, or ‘off-line’, mixing and editing of music.
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5.3 The Virtual Studio Technology Plug-In Format in Deil

The Virtual Studio Technology (VST) plug-in formatas first developed by
Steinberg in 1996. The format was first incorpataiteto Steinberg’<Cubase
Digital Audio Workstation (DAW3® host software in an attempt to allow for the
amalgamation of ‘virtual’ studio resources (suchetiscts, instruments, mixers
and automation) into the same desktop environmiereby emulating the
structure and functionality of a ‘real’ studio whitypically consists of the same
elements in hardware form. In 1997, an $bfor the development of VST-
compatible software was released to the publics Bpien-source kit, as well as
a freely-available development licence from Steigheneant that hobbyist and
commercial software developers began to take updthelopment of VST-
compatible software. Furthermore, VST softwarer@sss-platform, meaning it
may be created for Windows, Mac or Linux platforradeature which further
enhanced its popularity. Given these benefits, \¢8mpatible plug-ins and

hosts numbered in their thousands within severalsye

VST plug-ins function in real-time and generalljkdaone of two forms:
instruments, which produce a sound (generally usiyrghesis, sampling or a
combination of both); or effects, which modify ekig sounds and may be
chained together. The Thaw software is an examipgeMST effect. VST plug-
ins require a host within which they must functigv.great number of such
suitable hosts exist, allowing for the use of VSiligpins within a broad and
flexible variety of music production contexts. Figtmore, since the release of
version 2.0 of the SDK in 1999, VST plug-ins havpported the reception of
MIDI messages — this has allowed for further fl@itypin the control of VST
software, particularly for software synthesisers.

3 DAW - a desktop music production environment. Uguaonsists of a central host
application, such afubase which enables recording, editing, arranging, seging and
playback of audio and MIDI tracks, as well as tapability to use plug-ins.

* SDK — Software Development Kit. A collection ofsteirces, including source code and/or
precompiled libraries and documentation, aimedsaisting the development of software.
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Perhaps the most significant advantage of deveiohia Thaw software in the
form of a VST compatible plug-in has been the gbio focus on the internal
and innovative processes of the software — the ldgreent of a stand-alone
product, or indeed a lesser-supported plug-in formsuld have involved
spending a significant amount of time on aspecthefsoftware which are not
required by the VST standard. A Graphic User laieaf (GUI), for example,
does not necessarily need to be included when dewej a VST plug-in —
although the usability and visual aesthetics ofug4n are generally enhanced
by the inclusion of a GUI, the host application gligs a generic set of
graphical slider controls if one is not includedniarly, the VST standard does
not require the programmer to communicate with tlemputer's audio
hardware or drivers. Instead, the host simply massestream of digital
number§’ to the plug-in, which may be manipulated as tfEymmmer wishes.
The VST SDK provides a framework for the programmedefinition of all the

functions and processes which are central to tieeadipn of the VST.

The architecture and language of the VST standBid &rsion 2.4, as well as
its role in the development of Thaw, will be exgdrin further depth in Chapter
6.

5.4 Programming Language and Environment

A number of programming languages including Vis&alsic, Java, Pascal,
Delphi, and even machine/assembly code, have ssfatlgsbeen used in the
development of audio processing software. The nigjaf these, however,
suffer from deficiencies such as low efficiency amdack of support from
SDKs. Most of these languages are suited to theeldpment of musical
programs which do not involve processing large tjtias of digital audio data

— for example, notation software or software fondiang MIDI signals.

% Each of these floating point (i.e. real, non-i®gnumbers in the range of -1.0 to +1.0
represents an individual digital audio ‘sample’ t-GD standard audio quality, the VST will
receive 44,100 such samples per channel per second.
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The most commonly used languages for developingoaapplications are C
and C++ — these languages have a wide featurgsetuce fast and highly
efficient code, and are supported by the majorityaodio SDKs. Despite a
number of weaknesses such as having a difficuthieg curve and a tendency
to produce bewildering and esoteric errors, it vdesided that the Thaw

software would be written using a combination cdr@ C+#°.

The Microsoft Visual C++ 6.0 IDE was used in order to facilitate the C and
C++ software development. Although different IDEe available, as well as

newer versions of Visual C++, Visual C++ 6.0 wa®s#n as it has a proven
track record and benefits from high levels of oalgsupport in the development
of VST software.

5.5 Implementation Fundamentals and Strategy

The process of VST development began once the gddlse Thaw software
development were eventually crystallised, as dsedsin Chapter 1, and
following decisions on the overall design, as désad in this chapter. No
project timeline was drafted prior to the commeneetof development due to
the previously unexplored nature of this particufenoject. However, in
accordance with good software engineering prinsi@edetailed project log,
excerpts of which are reproduced in Appendix llaswnaintained throughout
the development process. This, along with a congirgilre backup repository
of the software itself, ensured that the develogmescess proceeded at a good

steady pace without major setbacks.

The final form of the completed product, includiag explanation of the
algorithms which are central to its innovative noeth of sound transformation,

is now documented in the following chapter.

% The C++ language is an extension of the earliéar@uage. While C is faster, the object-
oriented nature of C++ is generally better for pridg programs with any non-trivial degree of
complexity (Deitel & Deitel, 2001).

2" IDE - Integrated Development Environment. A progravhich integrates the elements
necessary for software development, such as téxtredompiler, linker and debugger.
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Chapter 6 SOFTWARE IMPLEMENTATION

This chapter documents several of the importararalgns and methods used
within the Thaw software. Pseudo c8tis used to explain much of the Thaw
functionality in this chapter; C++ literate readensay consult Appendix I. for
C++ code snippets which correspond to the pseude tothis chapter, or may
access the accompanying CD in order to view th@eesburce code of the

project.

The Thaw software utilises three pre-existing cagmirces which were
necessary for the implementation of the plug-ineSénconsist of the Steinberg
VST SDK version 2.4 (Steinberg GMBH, 2006) — séso &ection 5.3; an
implementation of the CARL phase vocoder which weeviously modified by
Richard Dobson and the Composers’ Desktop Progeatekl-time functionality
(Dobson, 2001) — see also Section 4.3.5; and a Emguency Oscillator class
by Remy Muller (Muller, 2003).

6.1 Thaw Sound Transformations and their Parameters

Thaw allows controls over its functionality via eé® parameters which may be
manipulated in real-time by the user using eithe@omputer mouse or MIDI
controlle?®, or by the host software using automation. Thesarmeters specify
the nature and magnitude of the sound transformsmtiexecuted by the
software. The function of each of these parametedstheir subsequent effects

is now explained:

- Dry/Wet mix: this parameter allows the user to cross-fade the

frozen/thawed or otherwise modified ‘wet’ sound atesl by the plug-in

28 pseudo code — an explanation of software algosthmplain terms, without the use of a

specific computer language. In this chapter, theuge code contains snippets of Thaw code —
class, object, method and variable names, as weltter key words which appear in the C++

code itself, are highlighted here in @eurier New  font.

2 The ability to use MIDI controllers for changinghdw’s parameters is dependent on the
capabilities of the host software.
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with the ‘dry,” unaffected sound which is being fedthe plug-in from the
host. This parameter is not strictly necessary astrhosts will allow the
plug-in to be used as a ‘send’ effect, therebyvahg these sounds to be
mixed manually outside the plug-in. The inclusiohao Dry/Wet mixer
within the plug-in, however, allows for easier stiring within many
modular music production environments and was fbheseincluded
following requests from several beta testers (Appenll.). It is worth
noting at this point that Thaw’s phase vocoders ewastantly active,
whether or not the freeze effect is On or any o#féect is active — this
results in slight audible artefacts (as mentionedChapter 4) when the
Dry/Wet mix is set to 100%. Furthermore, becausa slight latency in the
operation of the phase vocoder, a very short estaudible when the Wet
and Dry signals are mixed together and the effe@ff. This is not a major
issue, however, as the user would have little reasdblend these signals
when the effect is Off.

- Off/On: this parameter allows the ‘freeze’ functionalitylie switched on.
When this happens, the phase vocoder captures gle simame of
frequency/amplitude dath and resynthesises this instead of the usual
overlapping analysis windows. This important fuantlity is central to the
operation of Thaw and contributes strongly to itgiaality — the algorithm
is explained in detail in Section 6.4.2. The useynstill manipulate the
(non-frozen) sound with all of the other parametezsen when this

parameter is set to Off.

- Pitch Shift: this simple pitch shifter raises the values o frequency
components in the phase vocoder analysis frameatel$ not preserve the
relative relationships between the harmonic comptmef the sound, as
most conventional pitch-shifting algorithms do, rétgy allowing this
function to create unusual sounds which bear Iliglemblance to the non-

pitch shifted original. Furthermore, this functigs cyclical — the pitch-

%0 In Thaw, the frame is approx. 20ms or 1024 samjgeg by default; therefore, when the
freeze effect is On, the listener is essentiallgrimg a synthesised reproduction of the average
timbral characteristics of a 20ms segment of sound.
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shifted sound ‘wraps around’, returning to the imiad pitch and allowing

for the creation of a sound akin to Shepard t¥nes

- Spectral Degradation this feature, which is made possible by the uaiqu
nature of the phase vocoder, takes a user-spegfigportion of random
amplitude components of the spectral data and tbet® to zero. This
effectively cuts a proportion of random frequenciesn the synthesised
sound and produces a noisy, warbling effect. Thimmeter is suitable for
producing noise-based drones.

- Low Frequency Oscillator (LFO): an LFO is a continuously modulating
value corresponding to one of several wave shap#sle oscillators of
much greater rate/speed are commonly used to peodudio tones, LFOs
are typically used to modify existing sounds; oftenorder to produce
tremolo, vibrato or similar effects. In Thaw's catbe LFO is used to
modify the frequency components of the phase vacadéa, producing
rising and falling pitches. The operation of the Q.Flepends on the
following parameters:

o0 LFO Modulation Factor: this parameter specifies the
proportion of frequency components which are taffected by
the LFO. At low values, its effects are minimal. Ate
Modulation Factor’'s maximum setting, the LFO afteall of the
frequency components of the sound.

o0 LFO Wave Shape the user may select one of a common
number of wave types in order to vary the nature thoe
movement of the LFO — the options consist of sim@ngle,
sawtooth, square and exponent waves. These wapesheere
included in the pre-existing LFO algorithm; howevitre author
has extended these by implementing a random LFCewhape.
With the proposed drone aesthetic in mind, thisdoam wave
shape is intended to allow the user to create aenooganic

sound, thus offering an alternative to the otheriooéc and

31 Shepard tones are an auditory illusion that givesimpression of an infinitely rising or
falling pitch.
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rhythmic wave shapes. The original algorithm foodarcing the
random wave-shape is documented in Section 6.4.5.

LFO Rate: the speed/frequency at which the LFO operates. As
Thaw is intended to produce slowly-moving soundke t
maximum LFO speed is limited to 24Hz (i.e. 24 cgclaer
second); this allows very fast vibratos and a $ligimg
modulation effect, however, user control for thergmeter is
logarithmic to allow for more precision when seiegtvery low
frequencies. This logarithmic relationship is déssd in more
detail in Section 6.4.5.

LFO Depth: the degree to which the LFO will alter the
frequencies in the phase vocoder analysis windows,
corresponding to the pitch of the sound produceie TFO
Depth is essentially a more flexible, automatedsieer of the

manual Pitch Shifter parameter.

Spectral Filter: allows the user to boost or cut a specified band

frequencies. Although the functionality of this ti@e is similar to that of a
parametric equaliser, this Spectral Filter is nategthe same as it modifies
the spectral data produced by the phase vocodeppased to the time-
domain signal which is affected by an equaliser.

o Spectral Filter Centre Frequency: specifies the frequency in

the audible range around which frequencies will dug or
boosted. Like the LFO Rate parameter, this paraméete
logarithmically controlled — this is to allow a @ter degree of
control in the lower, musically important end ofetlaudible
spectrum.

Spectral Filter Gain: this parameter specifies whether the sound
is to be cut or boosted by the filter. Negativeuesl indicate a
cut, positive value indicate a boost.

Spectral Filter Bandwidth: specifies the range of frequencies
around the centre frequencies which will be affeéctdhis
parameter is analogous to the ‘Q’ parameter foundnwst

parametric equalisers.
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6.2 Software Structure

6.2.1 File Structure

Figure 13 (below) illustrates the hierarchy of files used in Thaw’s Visual
Studio project. The nature of the interaction betthe classes in these files is

now discussed in Section 6.2.2.

Thaw Project
vstplug.def
Interfaces
aeffect.h
aeffectx.h
vstfxstore.h
Vst2.x

audioeffectx.cpp — Pre-existing libraries
audioeffectx.h
vstplugmain.cpp

pvocex

pvoc.cpp
pvpp.h

Lfo

LFO.cpp

LFO.h S
Apvoc.cpp —
Apvoc.h
CFunctions.c
CFunctions.h
Thaw.cpp
Thaw.h
ThawMain.cpp - |

— Author code

Figure 13: The Thaw project's file structure. Boldnames indicate folders.

6.2.2 Class Structure

Like the majority of similar modern software protkjcan object-oriented
design strategy was applied to the development&wl While this design
principle assists in the manageable constructiosizdable software products
and the relatively easy integration of pre-existhuftware components, it may
not be familiar to the uninitiated reader. Furtherey as a wider discussion of
object-oriented design principles is outside thepscof this work, this section

will not attempt to explain the Thaw software atebiure in formal detail.
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Rather, it will attempt to provide the reader with good high-level
understanding of how the different elements ofgb#ware integrate with each

other and function in real-time.

As previously mentioned, Thaw is constructed usingumber of components.
These include a large amount of original code, aetéved from the Steinberg
VST SDK, instances of a modified CARL phase vocoderd a simple LFO
class which has been extended to incorporate aveexe shape specifically for
Thaw. The nature of the interaction between thesaponents is outlined in

Figure 14:

Pre-existing cod:

LFO Class VST SDK CARL phase vocoder | !

instance of (modified) derived from (modified) instance of (modified)

Author's code

__________________________________________________________________________

: myLfo objects Thaw object myPvocs objects i
i (LFO class) (Thaw class) (Apvoc class) !
E Initialisation — |+~ Program Entry Point ~_| Initialisation — i
! LFO::LFO() Initialisation — T Apvoc::init() !
! Thaw::Thaw() : H
: 1T / AudioEffectX() L !
| Utility method ~ }£; T Utility method 5
i (e.g. set rate, " (e.g. clean :
! waveform) j Utility method: (e.g. memory) :
! get and set paramete |
i | values) ﬂ :
| N il : ’
| - & - pvoc increment — :
! LFO inciement- Audio Proces— Apvoc::tick() i
! LFO::tick() < processReplacing() ~ H
! =% I !
! [ z !
Spectral Modifications :
! i (Cfunctions.c file) |
| V i
! Modify sound —transformTheFrame() Create static soundmakeFreezeFrame() |

Figure 14: The relationships between the components the Thaw software”.

%2 This diagram is an informal and non-exhaustivestiiation of the Thaw software architecture
and its components. Interested readers are enaalitagead the relevant C++ header (.h) files
on the accompanying CD in order to gain an insagtto the formal structure of the Thaw
software.

-52 -



An object named haw is created upon the opening of an instance ophing-in
and is therefore the entry point of the softwatas Iderived from a base class
defined in the VST SDK - this means that not ordgslit provide access to the
functionality of the SDK in order to perform all ¢fie necessary interaction
between the host and the plug-in, but it also plesithe ability to extend the
capabilities of the SDK to suit the intended pugsosf the software.

Upon its creation, th&haw object is called by the host software. It creaied
initialises two instances of thpvoc class, nhamedyPvocl andmyPvoc?2.
Each of these incorporates phase vocoders whiclysenand resynthesise the
audio streams passing through each of two audior&is. For every numerical
sample received byhaw from the host, methods calléidk() , members of

myPvocl andmyPvoc2 are called, thereby incrementing the phase vosoder

Thaw also creates one instance of €O class namednyLfo . myLfo is
similarly called every tim&haw receives a new samplmyLfo is initialised
and thereafter returns a value back law representing a low frequency wave
of variable shape. This value may be used as dgsit® use in the Thaw

software is explained in Section 6.4.4.

The methods/functions of each of tlibaw, myLfo , and myPvocs objects

may be roughly subcategorised as Initialisationlitiytand Processing. Upon
the creation of each new object, Initialisation hoels are called — in Thaw's
case, this occurs when the plug-in is initiallyded. Utility methods may be
called as required — for example, in the caseuda-defined change of plug-in
parameters or a change in preset/program. Progas&thods are called in real-
time and are therefore central to the processingefeal-time stream of digital
data received by the host. All other Processinghous are called froffthaw's

processReplacing() method.
Several of Thaw’s most important methods will bglaeied in the following

two sections. The source code for all of these rdlgns is available in

Appendix I.
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6.3 Initialisation Methods

6.3.1 Thaw Initialisation

Method name: Thaw::Thaw(...) : AudioEffectX(...)
The constructd? for the Thaw class, which is derived from the fundamentally
important SDK-defined AudioEffectX clasg®, performs the following

functions upon the loading of the plug-in:

Algorithm:

- Get the sample rate from the host.

- Create and initialise arhawPrograms object (for storing plug-in
preset?).

- Initialise all of the plug-in parameters to theafault values.

- Set the number of inputs and outputs.

- For each audio channel, create and initialise gacolof typeApvoc . Pass
the sample rate, FFT length, overlap factor anddawtype to each object.
Perform some error checking.

- Set the default values fdreezing  andfreezeOnce to tell the phase
vocoders that the plug-in is not yet in ‘freezimgode.

- Create an object of tydd=O - initialise the rate, phase and waveform.

6.3.2 Phase Vocoder Initialisation

Method name: Apvoc:init(sampleRate, fftlen, overlap,

mode)

This method is called upon the creation of tmgPvocs objects, immediately
following the initialisation of thé& haw object. It prepares the phase vocoder for

its subsequent task of analysing and resynthesisBagqcoming audio samples:

3 Constructor — a method which is called when areatbis first created. The constructor is
typically used for initialising an object and itember functions.

3 AudioEffectX  is essentially the host's means of communicatiith the plug-in.

% The VST plug-in architecture allows for the defiimi of preset parameters. This is often
useful to allow users of many types of plug-ingjétting started. However, it was decided that
Thaw would not include presets, due to its expemtalenature and suitability for nurturing
experimentation from the user.
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Algorithm:

- Perform some error checking.

- Initialise some variables indicating the size ancertap of the phase
vocoders and the number of frequency Hims each phase vocoder frame.
Define buffers to hold phase vocoder bins andage them to zero.

- Create CARL phase vocoder objects; one each forlysing and
resynthesising the streaming audio. Initialise treemd perform some error
checking.

- Initialise some user-defined flags which will latex used to freeze/unfreeze
the sound.

6.4 Signal Processing Algorithms

6.4.1 TheprocessRepl aci ng() method

Method name: Thaw::processReplacing (inputs, outputs,
sampleFrames)

This method is called each time the plug-in recei@e audio sample from the
host and therefore is the fundamental driving fdyehind all subsequent signal
processing algorithmgrocessReplacing() is derived from a base class
which is defined by the VST SDK and is necessadllitvST plug-in effects. It
operates in real-time, and great care must therebm taken to make its

operation as efficient as possible:

Algorithm:

- Create four buffers: for storing the input and emitgamples in each of two
audio channels. Assign these buffers to the inpaots outputs used by the
host.

- If theOnOff parameter is set to on:

o freezing is true.freezeOnce is false. [1]

- Else

o freezing is falsefreezeOnce s true. [2]
- EndlIf
- If theLFOshape is changed by the user:
o Change th&FOto the specified Shape.
- EndlIf
- If themyPvoc objects are functioning correctly:

% Frequency bins are pairs of data representingathplitude and frequency of spectrally
analysed signals, as discussed in Chapter 4.
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o While samples are received from the host:
* Increment the LFO EFO->tick(). [3]
» Request the next sample from the host.
* Increment themyPvocs objects and receive a value in
return. [4]
= Multiply this returned value by th€rossFade Factor
and send to the host. [5]
o End While
- EndlIf

Notes
[1] If the user specifies that the freezing funotie currently on, a variable
namedfreezing is told so. ThdreezeOnce variable is set to false, so the
phase vocoders will simply resynthesise the origgoand. This functionality is
explained in further detail in Section 6.4.2, below
[2] If freezing s true, thefreezeOnce variable will inform the phase
vocoder to continuously resynthesise a single cagdtirame of audio rather
than stepping through the audio in overlapping &arnn its usual manner (as
explained in Chapter 4). This algorithm is fundatakrto Thaw's freeze
functionality and will be explained in greater deia Section 6.4.2.
[3] The LFO object will return a value which may be used asirdd — in
Thaw’s case, this value will be sent to tin@ensformTheFrame() method
via themyPvocs->tick() method, where it will perform modifications on
the frequency components of the phase vocoder data.
[4] myPvocs->tick() is called in real time. It receives the following
values fronprocessReplacing()

- The audio sample which is to be processed.

- TheFreezing flag.

- Values relating to the functionality of the Spekbagrader, Spectral

Filter and LFO effects — a comprehensive list @sth parameters is
detailed in Section 6.4.4.

Tick passes a value backpgocessReplacing() in return.
[5] This returned value is multiplied with the dngl input signal using a

cross fader (corresponding to the Dry/Wet parameted sent back to the host.
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6.4.2 Phase Vocoder Incrementation and Freeze Effect

Method name: Apvoc:tick (insamp, freezing, IfoFac,
[foModFac, pitchShift, spectDeg, notchCF, notchGain ,
notchQ)

This method is responsible for filling the phaseaaer buffers (or frames) with
incoming samples, analysing each frame when iilledf calling the function
which performs spectral modifications (as detailedection 6.4.4, below) on
the information in these frames, ‘freeze’ a sinflame if told to do so,
resynthesise the spectral data contained in tmeSaand pass audio samples

back to theprocessReplacing() method, and hence the host, one by one:

Algorithm:

- If Not freezing:
o freezeOnce s set to true. [1]
- EndIf
- Increment the current position in the output buffer
- If the position of the input buffer is equal to theesof the analysis frame:
[2]
0 Using the phase vocoder, generate an analysis fodrsgectral
data from the input buffer.
0 Reset the current frame position to zero.
o If thefreezing effectis currently on:
= |f freezeOnce is true:
* CallmakeFreezeFrame() .[3]
» SetfreezeOnce to false.

= EndlIf
= Call transformTheFrame() , passing the frozen
frame. [4]

= Using the phase vocoder, resynthesise this frozen
analysis frame and add the results to the outpitétbu

= Call transformTheFrame() , passing it the
streaming, non-frozen frame. [5]
= Using the phase vocoder, resynthesise this andhgsise
and add the results to the output buffer.
o EndlIf
- EndlIf
- Increment the input buffer, filling it with the nesample from the host.
- Return the current value in the output buffer @ liost.
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Notes

[1] If the freezing effect is currently off, thisafh needs to be set to true in
order to continuously prepare a buffer for whendfiect is switched on.

[2] The code within thidf condition (which comprises the majority of the
code in this function) is only executed when a riellvanalysis frame has been
filled with samples from the host.

[3] ThefreezeOnce flag will only be true whenever the freezing effec
initially switched On. A single frame of analysisitd is captured using the
makeFreezeFrame() function.

[4] This frozen frame is passed to tthansformTheFrame() function,
which applies all of the subsequent spectral meatibns — Section 6.4.4,
below.

[5] If the freezing effect is NOT currently on, tle®ntinuous stream of
overlapping non-frozen analysis frames is passed to
transformTheFrame() , thereby allowing the user to apply effects to the

non-frozen sound if wished.

6.4.3 Creating the Frozen Frame

Method name: makeFreezeFrame(*streamingFrame,

*freezeFrame, nbins)

This method is called each time the Off/On paramisteset to On. It is only
called at the instant the parameter is switched &l thereafter cannot be
called again until Off/On has been set to Off andikbOn again. Its function is
to copy the contents of the last phase vocoderdranich has been processed
(streamingFrame ) into a new buffer calledfreezeFrame . The
freezeOnce andfreezing flags, discussed in previous algorithms, will
then determine when this frozen frame, as oppoeethé usual stream of
continuously overlapping frames, will be resynteedi The algorithm is quite

simple; it simply copies the contents of one buiifieo another:

Algorithm:

- Create variables, al
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- Fora=0,al =0; a<nbins; a++, al+=2 T[1]

o freezeFrame[al] = streamingFrame[al] [2]
o freezeFrame[al+1] = streamingFrame[al+1] [3]
- End For

Notes:

[1] Two indices are used by tHeor loop due to the interpolation of the
values in the frequency bins; i.e. amplitude aredjdiency values are stored one
after the other.

[2] Amplitude values are copied individually fronhet phase vocoder
analysis frame into the frozen buffer.

[3] Similarly, frequency values are copied here.

6.4.4 The Sound Transformation Algorithm

Method name: transformTheFrame(*inFrame, *outFrame,
IfoFac, IfoModFac, pitchShift, spectDeg, specFiltCF ,
specFiltGain, specFiltQ, nbins)

transformTheFrame() is one of only two C (as opposed to C++) methods
used within the Thaw software. As this method iéedavery frequently (every
1024 samples) and performs multiple modificatioms hmndreds of analysis
bins every time it is called, efficiency is of themost importance — the C

language is hence more suitable in this context.

transformTheFrame() is similar in operation to the
makeFreezeFrame() algorithm discussed above, but is much more
complex. It takes an input analysis frame — whicaynbe either the frozen
frame or the normal streaming sound, as specifjetthé user — modifies it, and
returns the modified frame. It receives the follogvi parameters from
Apvoc::tick() (most of which originated from thEhaw object and hence
the user-controllable parameters) when it is called

- *inFrame - a pointer to a buffer where the current analysse is

stored
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- *outFrame —  a pointer to a buffer where the modified analysérie
will be stored.

- IfoFac — the magnitude of the current LFO value (depth mplktd by
the current rate factor received from ttfeO object).

- IfoModFac - the LFO modulation factor.

- pitchShift — the pitch shifting factor.

- spectDeg — the spectral degradation factor.

- specFiltCF — the spectral filter centre frequency.

- specFiltGain — the spectral filter gain.

- specFiltQ — the spectral filter bandwidth.

- nbins—  the number of bins in the analysis frame.

Algorithm:

- Define variables andal which will be used in th€or loop.
- Define a variableshiftFac = pitchShift * 170 . [1]
- Define a variablenultFac = (1 — IfoModFac) * 100 . [2]
- Define a variablelegFac = (1- spectDeg) * 100 . [3]
- Define a \variable halfFilterwidth = (nbins*(1-
specFiltQ)/2) . [4]
- Define a variablefilterFacHi = (specFiltCF*nbins) +
halfFilterwidth . [4]
- Define a variablefilterFacLo = (specFiltCF*nbins) —
halfFilterwidth . [4]
- Define a variabldilterFacGain = specFiltGain * 2 . [4]
- Fora=0, a<nbins, at++ - [5]
o If a<5*rand()%(101-degFac): [6]
= outFramela] =0 . [7]
o Else If a > notchFacLo && a > notchFacHi:
= outFrame[a] = inFrame[a] *
notchFacGain [8]
o Else
= outFrame[a] = inFrame[a] [9]
o EndlIf
o If a<5*rand()%(101-multFac): [10]
= outFrame[a+1] = inFrame[a+1] + IfoFac
+ shiftFac [11]

o Else
= outFrame[a+1] = inFrame[a+1] +
shiftFac  [12]
o EndlIf
- End For
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Due to the complexity of the preceding algorithms+Cliterate readers may
wish to consult Appendix I. or the relevant file tdre accompanying CD in

order to gain a better insight into its operation.

Notes:

[1] This simply scales the pitch shifting valuethat the pitch will return to
unison when the parameter is set to 100%.

[2] The use of this variable will be explained iot& [10], below.

[3] The use of this variable will be explained iot@ [6], below.

[4] These variables simply calculate how many bamseach side of the
filter’'s centre frequency will be modified by thiéidr gain parameter.

[5] This For loop iterates through all of the bins in the as&yframe. Its
operation is similar in operation to that of tmeakeFreezeFrame()

function’sFor loop.

The lines of code from note [6] to note [9] perfommodifications on the

amplitude components of the spectrally modified sound:

[6] This condition selects random amplitude bihg proportion of which is
decided by thedegFac variable — this action corresponds to tBpectral
Degradation effect.

[7] If an amplitude bin is randomly selected, itdue is set to zero.

[8] If an amplitude bin has not been selected, ayrmtill be affected by the

Spectral Filter — if the bin falls between thdfilterFaclLo and

filterFacHi parameters, this modification (i.e. the cuttingboosting of a
specified range of amplitudes) is performed here.

[9] If neither the spectral degradation nor spediiter modifications apply
to this bin, it is copied to the output frame veiina

The modifications carried out from note [10] to@¢12] correspond to changes

in thefrequency components of the analysis frame:

[10] This selects random frequency componentsptbportion of which are

decided upon by thenwultFac  variable — this will decide how much of the
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sound is to be affected by the LFO and correspondbe LFO Modulation

Factor parameter.

[11] If this frequency bin is to be affected by thEO, IfoFac is added.
shiftFac , thePitch Shifter factor, is also added.

[12] If the bin is not affected by the LFO, jusetbhiftFac  is added.

6.4.5 Further Noteworthy Algorithms

This section briefly describes several algorithntgcl, while not fundamental
to Thaw’s functionality, have been implemented idev to improve or enhance

the aesthetics or usability of the plug-in.

Random LFO Wave Shape

(Excerpt from) Method name: LFO::setWaveform(index)

This method is called when the user changes thew&e shape to Random. It
produces a 256 point wave table using a ‘drunkeli’vaégorithm®’ which was

written by the author to function in a suitable manwithin Thaw. This table is

accessed by the FO::tick() algorithm, thereby passing its points
sequentially to théransformTheFrame() method at the specified rate and
depth.

- Declare a variable. [1]
- Declare a variablplace and initialise to zero. [2]
- Fori=0;i<256;i++ - [3]
o If arandom value from 0-4 is equal to zero: [4]
» place is assigned the value place plus a random
value: either zero, -0.1 or + 0.1. [5]
= table]i] is assigned the value place . [6]
o EndlIf
- End For
- table[256] is assigned the value of zero. [7]

Notes:

3" The drunken walk algorithm starts at a particlaint (in this case zero) and thereafter takes
a random ‘step’ to the left or right — in the cadehis LFO, it will produce a continuous wave
shape which, while somewhat random, may not beam®isy as to distort the sound.
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[1] i will be used to increment theor loop, below.

[2] place will be used to store the current position of thave table
points.

[3] This For loop iterates through the wave table, filling itwnew points.
[4] This condition is in place to ensure the waable is not filled at every
new point, hence reducing noise.

[5] This is the central part of the drunken wallgaithm. The previous
value ofplace is randomly either increased, decreased or untalich

[6] The next point in the table is filled with tleeirrent value oplace .

[7] The last point in the table is reset to zero.

Logarithmic Scaling of LFO Rate

(Excerpt from) Method Name: setParameter(index, value)

As Thaw is intended to create slowly moving sountdsyas decided that the
rate of the Low Frequency Oscillator should be kept However, higher LFO
rates are capable of producing ring moduldfi@ffects and hence would add

another dimension to Thaw’s sound modification téfiges.

A short function was therefore written in ordeddgarithmically scale the user-
controllable LFO Rate parameter to a range of \saiukich would be capable
of allowing higher LFO rates (up to 24Hz) whileefhg a much finer degree of
control at the slower LFO rates (below approx. 4kizprder to produce slow
drones. Another function — which may be examined Appendix |. —

logarithmically scales the Spectral Filter Centneduency parameter in a
similar manner, thereby allowing more control a¢ tbwer end of the audio

spectrum.

Function:

- Declare a variabléogval and assign it the LFO Ratalue currently
specified by the user.
- If logval equals zero:

% Ring modulation is an unusual audio effect whishachieved by combining two audio
signals, one of which is usually a simple wave fosuch as those which Thaw's LFO is
capable of producing. At low rates (below 20Hz) #ffect is perceived as tremolo or vibrato.
However, at much higher rates, an unusual anchdtste bell-like sound may be achieved.
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0 Assign a very low non-zero valueltgVal . [1]
- EndlIf
- Thaw's LFO Rate is assigned the va({tleg10(1 — logVal)) * 5

[2]

Notes:

[1] The log1l0() mathematical function requires a non-zero valbés t
line of code will replace any zero value with atremely low non-zero value.
[2] log10() is used here to provide logarithmic scaling andhierted

and scaled in order to provide the 0-20Hz rangaired.

6.5 Further Implementation Particulars

6.5.1 Phase Vocoder Parameters

During the development process, it was hoped thaiTs functionality would
allow the user to select different phase vocodedaiv types, sizes and overlap
factors (as specified in Chapter 4) via severalitamél parameters. However,
due to the nature of the CARL phase vocoder usedas not possible to allow
the user to change these options after the phaselgohas been initialised, i.e.,
immediately after the initial loading of the plug-iNevertheless, changing these
parameters within the source code itself is aatimatter: by default, the phase
vocoder uses a 1024 sample long Hanning window wa#ittoverlap factor of
four. Consequently, it is envisaged that Thaw Wwél compiled and distributed
with a number of variations of these parameterstheanore, the software has
been structured to allow users to easily definar tbevn parameters using
#define flags. This flexibility should allow users of thsmftware — whose
source code will be made openly available — to skaghich combination suits
best, depending on their computational resourcestla@ types of sound they

wish to process.
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6.5.2 Software Testing and Refinement

Thaw was developed on a Dell Inspiron 6000 PC mmiVindows XP Service
Pack 2 with Intel Centrino 2.2GHz processor, 1 GEBVR ASIO audio drivers
and E-MU 1616 audio hardware. During this proc&sgw was continuously
refined, debugged and tested by the author on gaiog basis using Tobybear
MiniHost v.1.64 and Steinber@ubase SX.2. MiniHost is a simple application
whose sole aim is to host VST plug-ins; its simpfi@and speed were the main
reasons it was chosen as the primary alpha tedt gflaform for Thaw.
Although MiniHost allowed for speedier testinGubaseoffered the opportunity
to test the plug-in in a much more common and ppuiusic production
environment which offers multiple track sequencimgiltiple plug-in instances,
automation, and other features which would testpillvg-in’s capabilities and
reveal bugs. Thaw was also tested by the authéblaton Live, Cycling '74
Max/MSPand Jgrgen Aaseé&nergyXT

Approximately one month prior to the submissionTaaw, copies of the plug-
in were sent to a small group of voluntary bettetss This group were asked to
try the plug-in in a variety of different hosts atebt machines and to test its
functionality and reliability, based on a numbergofidelines provided by the

author. This beta testing process and its outcendetailed in Appendix III.

During beta testing, the ongoing development ofptlug-in temporarily ceased
and the author used the opportunity to further tiestsoftware in a real music
production environment. This process of using Thaw composition is

documented now in Chapter 7.
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Chapter 7 CREATIVE IMPLEMENTATION

7.1 Concept and Goals

A short composition entitlewhat Goes Around presented. The piece, which
makes abundant use of several instances of the phagain, was written under

the influence of both practical and creative conser

From a practical point of view, the compositiontbis piece has had several
benefits. Firstly, it is intended to be a demongiraof the sound-producing
capabilities of Thaw. In this regard, it was congmbslmost exclusively using
automation of the Thaw plug-in and intends to destrate the scope and

breadth of sounds which Thaw is capable of produaimd manipulating.

Secondly, as its composition was undertaken inlighssith the latter stages of
development of the Thaw software, the compositiawcess served to
thoroughly test the plug-in in the type of DAW emviment which is regularly
used by a large majority of computer musicianstif&rmore, this composition
was in its development stages during the finaletagf alpha testing and during
the entire process of beta testing, thus offerirgauthor the unique ability to
alter Thaw's source code and recompile the plugvitenever a specific
aesthetic was required or where a previously umtidebug was uncovered.
Thaw's final form therefore evolved partially asrasult of the personal

experience of using it in a real computer musiadpotion environment.

From a creative point of viewyhat Goes Aroundnay be interpreted as a
continuation of the drone-type aesthetic which bagn intertwined within

many and varied types of music throughout histag/discussed in Chapter 2.
Although the composition’s function as an expressid artistic statement is
secondary to its role as a demonstration of Thaug hoped that the lack of

usual musical traits such as rhythm, tonality ahentatic development are
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compensated for by a wealth of unique timbres dred rheta-musi which
results from interaction between the textures efdcbmponent sounds, thereby
providing the piece with artistic and aesthetic inas well as a purely

functional purpose.

7.2 Composition, Production and Post Production

What Goes Aroundias composed using Steinberg@sbase SXOAW software.
Three audio tracks were used; each of these usedstance of Thaw as an
insert effect plug-in. No other plug-ins were use€ubaseduring this process
of composition — this decision, along with the dem to make sparse use of
audio source materials, was taken in order to mtie composition as

transparent as possible in revealing the modificatiperformed by Thaw.

The source material for the composition consisted cello sample, a triangle
sample, and a very brief quotation from Beethovéfd®nlight Sonatdor solo
piano. Each instance of Thaw was used to perfornmdsaonodifications on its
respective audio sample throughout the duratioth@fpiece; a frozen snapshot
of each instrumental sample was taken in the opersaconds of the
composition and was manipulated with Thaw’s otHé¥ots thereafter until the
end of the piece. This resulted in the creationcofsistent yet constantly
evolving drones. These three samples were carafbthgen in order to present

as varied an audio spectrum as possible to theiptug

Once the process of composing using automation ceagplete, each of the
three audio tracks was exported in a raw form dedpost production process
began.What Goes Arounevas edited, mixed and mastered in surround sound
using Apple’sLogic Pra The use of post-production effects was kept to a
minimum; again, this tactic aimed to allow thedisér to perceive the effects of

the Thaw software without distraction and hindrafroen other effects. Some

39 Meta-music — may be described as the rhythms, draies, overtones and other musical traits
which unintentionally emerge at the ‘surface’ ofpece of music as a side effect of the
interaction between the intended, structured mugicanponents. Meta-music is especially
noticeable, even intentionally applied, in the mmialist genre and in spectral music.
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reverberation was added to the mix on a ‘sendcé&ffbus, and equalisation was
added to each track in order to remove some ofnihiey high-frequency
artefacts caused by the phase vocoder. A noisetieduylug-in was also used,
in order to improve the quality of the unfrozBtoonlight Sonatarack at the

end of the piece.
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Figure 15: A screenshot of theCubaseproduction environment in which What Goes
Around was composed. The horizontal blue lines represetite automation curves which
comprise almost the entire composition.

7.3 Aesthetic

What Goes Aroundegins with a slow fade-in revealing three coreuoty
spatially distributed and largely static drones.e©geveral minutes, Thaw's
effects are used to linearly change the drones flangely static through a

variety of stages which are mainly characteriseditfgrent LFO settind$ and

“%n particular, the Random LFO shape (which wasi§ially written with the drone aesthetic
in mind) offers a highly organic feel to the comitios: by creating random, jerky pitch changes
at the specified magnitude.
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pitch changes. The spatial distribution of the ésois varied from time to time
by means of surround panning, and each track’s rdimdevel occasionally
changes, usually in order to reveal noteworthy deuim certain drones at

certain times.

The magnitude of the effects is gradually increasedr time; continuously
rising pitches, rising levels of distortion and eugreasing LFO rates lead to
an agitated, ‘wall of sound’ type aesthetic by tfoairth minute of the
composition. At approximately this point, all effec— except for the
fundamental ‘freeze’ effect — are abruptly removetid the drones again
become static. This aesthetic is sustained forceqpately one minute, during
which more of the meta-music caused by the intgrgctrones becomes
apparent, lending a gentle, pulsating feel to thesim At the end of the
composition, a final pitch change leads seamlasstythe ‘unfreezing’ of each
drone, thereby allowing the listener to recognieeinstrument which was used

to initially create each drone.

- 69 -



Chapter 8 CONCLUSIONS AND FUTURE
POSSIBILITIES

This chapter will summarise the sonic and functiggeaformance of the Thaw
software. The extent to which the goals of the wedte achieved will then be
discussed. Finally, proposals for future developmemd extensions to Thaw,
as well as outlines of several broader conceptimsed on this work, will be

presented.

8.1 Observations on Sonic Performance

Regarding the aim of creating completely static anchodulating ‘snapshot’
sounds, as discussed in Chapter 1, Thaw's perfareneanges from acceptable
to highly convincing. The end result depends tammd extent on the phase
vocoder’s attributes; that is, by varying the clsiof window type, length and
overlap factor — often at the expense of computatiperformance — the plug-
in’s resulting aesthetic will change. The sourcensbs spectral characteristics
are, however, a much greater factor in this regevdll-pitched monophonic
sounds may be ‘frozen’ with excellent results; asioal note may seamlessly
and convincingly be sustained indefinitely wherdistener would normally
expect it. Polyphonic sounds occasionally do noatcessfully convey the
original impression of harmony or pitch in the nehesised signal. However,
amplitude and timbre are almost always successfukygerved and, thanks to
the phase vocoder’'s use of a bank of oscillatdigerahan a looping technique,

the impression of periodicity is avoided.

As a tool for the not-quite-static manipulation drones, Thaw introduces a
number of original effects which serve to give tacacter, or to give it a
‘signature’ sound. The Low Frequency Oscillator miag used either to
discreetly and slowly modulate certain frequenoiea sound, to randomly send
its components askew, to generate pulsing metdmnigt or, at high rates, to

introduce distortion and ring modulation into tleeisd. The Spectral Filter may
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accentuate certain frequency bands and createybaudlble melodies through
slow manipulation of its parameters. The Pitch t8himay be use to gradually
skew the timbre of a sound until it is beyond ragtign, or, in conjunction with
the Dry/Wet mix, introduce the phenomenon of rhyithfbeats’ which result
from simultaneously playing closely adjacent pih€hese effects, as well as
the others included with Thaw, may be used eitl@mrea in multiple instances,
or in combination with other plug-in instrumentsdagffects, either in off-line
production contexts — as demonstrated What Goes Around- or in live

performance situations.

8.2 Achievement of Goals in Summary

Overall, the goals of this work were achieved. Theaw software,
incorporating a phase vocoder and a variety ofimalgeffects, has successfully
been implemented. A composition which serves toatetrate Thaw's use as a

tool for drone creation and sound design has bezsepted.

It has been demonstrated that the Thaw softwaam isriginal, distinctive and
capable means of producing static and drone scamdisnanipulating them in a
number of innovative ways which, heretofore, hawe heen available to
computer musicians. Furthermore, the fact thatetfiect is encapsulated in a
VST plug-in format offers novice or inexperiencedusicians to use its

functionality in an environment with which they deeniliar.

Perhaps most significantly, as demonstrated bydkiew of existing products

in Chapter 3, Thaw is believed to be the only phaseoder-based product
whose central goal is the creation of drone-likensts. This achievement is
highlighted by the composition &/hat Goes Aroundnd by the emergence in
the software of a distinctive, yet highly dronedssind characteristic aesthetic,

as observed in Section 8.1, above.

Notwithstanding these developments, Thaw is nandéd to be a definitive,

all-encompassing solution for the creation of stafid drone sounds. Indeed, it
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is likely that many experienced computer musiciansound designers would
prefer to utilise ‘home brewed’ methods in order @ohieve a favoured

aesthetic.

One of the most significant aspects of the Thawetiggment has been the
opportunity to explore and further develop the powfethe phase vocoder. As
previously mentioned, it is widely acknowledgedttthee phase vocoder’s sound
modification abilities have only partially been éoqed; although several
original effects which harness this power have beglemented in this work, it
iS now even more apparent that much more can he\esh particularly where
a drone aesthetic such as Thaw's is concernedowioly a number of
suggestions on how the existing Thaw product magxXpanded in Section 8.3,
Section 8.4 will propose a number of conceptuabuations which would take
advantage of these facets of the phase vocodeebhenvolving significant

changes to the product.

8.3 Further Proposed Developments to Thaw

It is anticipated that further developments tohesion of Thaw presented here
will soon be undertaken; some of these are nownaatl These developments

would not require a significant change to the dtmecof the existing product.

8.3.1 User Interface

During the latter stages of development, the dereknt of a Graphic User
Interface (GUI) for Thaw was undertaken in the hdipat the usability and
visual aesthetics of the product could be enhanbed.to time constraints and
unforeseen programming-related issues, this GUI wais completed to a
satisfactory standard prior to submission. Thisasconsidered a major issue as
hosts will automatically assign suitable graphisider controls for any VST
where a GUI is not supplied. However, these hosigasd GUIs often do not

offer an ideal user interaction experience; fomagke, a button-type control for
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Thaw’'s Off/On parameter would be much more suitalbdan the current slider-

type control.

More complex graphical controls are also possilbles widely recognised that
control of music software via the computer mouséaigely restrictive, one-
dimensional and is generally a poor medium for egimg musical expression.
Although control of VST parameters is also avagatib MIDI and automation,
a number of mouse-based control innovations shaméhtly improve the
usability experience of Thaw users. Such an innomatould involve the
pairing of comparable parameters in a two dimeraiooontroller (as

exemplified by GRMFreeze Section 3.1.1).

It is hoped that Thaw's GUI, inclusive of such inative control methods, may
be completed as soon as possible. The completidmGUI should also serve
to eliminate an existing glitch which was discowkia two of Thaw's host-
assigned GUIs during beta testing (detailed in Adpelll.). A prototype for
the graphics of a partially completed interface Thaw, as well as examples of
the aforementioned host-assigned GUIs, may be atsgén Appendix IV.

8.3.2 Optimisation

Although the alpha and beta testing processesadtaticthat Thaw performed
without significant flaws on a variety of modern @ was noted that the plug-
in was quite heavy in its CPU usage; whilst processa stereo file, each
instance of the plug-in would typically consume 3% of the resources of a
Pentium Centrino 2.2GHz processor. As most VST-badesktop music
production environments would typically use manyl araried plug-ins, this

scenario may deter a musician from using sometinGPU-heavy as Thaw.

Improvements in Thaw’s performance efficiency wothdrefore seem wise. A
significant improvement may be achieved throughube of more efficient FFT
routines; in personal correspondence from Richardbsdn, who first

implemented the CARL phase vocoder in a VST enwremt, it was
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recommended that the Fastest Fourier Transformhén West (FFTW) be
implemented in place of the generic, inefficientTFkbraries which are
currently used. The FFTW architecture (Frigo & Jadm 1998) optimises itself
to take advantage of the hardware architecturkeofriachine on which it is run,
therefore offering much improved performance. Ih@ped that the successful
implementation of the FFTW libraries and other soghimisations can soon

take place.

8.3.3 Multiple Platform Support

As previously mentioned in Section 5.3, the VSTndtad allows for the
development of plug-ins for multiple platforms. Kdugh the current
incarnation of Thaw has been developed for the Wisdbased PC, it is
theoretically a trivial matter to ‘port’ the exisg source code so that Thaw can
run on other platforms, notably Apple Macintosh dndux. This porting,
which is planned for the near future, should sigaiftly increase Thaw’s

potential user base.

8.4 Scope for New Creativity

It is envisaged that the Thaw software will be askd as a free, modifiable, and
open-source plug-in following the completion ofsthwvork. This action will be
taken with the objective of making Thaw's functibitya available to any
interested party who may wish to build upon itsieeéments, whether these
interests lie in the creation of drone music, oretfein the functionality of the
phase vocoder in a real-time environment. It isdabthat this release will be
the first and most important step in prompting fatinnovative work which
might expand upon Thaw’s achievements. This sectdh now propose

several of the author’s ideas for such expansions.

-74 -



8.4.1 An Enhanced Implementation Context

While the inner workings of Thaw’s phase vocodde@tk are quite complex,
the context in which they are implemented is re&y simplistic. In other

words, there is a hands-on, linear, and straigiiod relationship between the
user controls and the sonic end result. While s$higightforward control path
allows for a high degree of user control which doesrequire a steep learning
curve, the implementation of a more complex mednsoatrolling the effects

could lead to a large broadening of the scope ohds which Thaw is capable

of producing.

Such an implementation could involve internally amating certain Thaw
effects. For example, an algorithm which would awaéically switch on or off

Thaw's Freeze effect at certain rhythmic intensgecified by the user might be
implemented. This could take the tempo parametem fthe host, thereby
freezing and unfreezing the sound in a manner whvolild align Thaw’s

resultant sound with the rhythm of the relevant position. This would be a
relatively simple algorithm to implement; howevinnay have the unintended
side-effect of destroying Thaw’s role as a dror@ &md instead result in a tool

for the creation of glitch-type music!

Nevertheless, such inherent automated modes ofat@re on the increase in
VST plug-ins (as demonstrated by products suc8lagerandFitchSplifterin
Chapter 3) and, with careful implementation, suantml modes would
doubtlessly enhance the scope and type of sounals iEhcapable of producing

as well as improving its usability.

8.4.2 Vector-Based Frame Morphing

This proposed effect would extend Thaw’s curreindrproducing abilities by
further exploiting the nature of the phase vocodisr.implementation would

involve a significant change to Thaw’s softwarehétexture.
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Instead of creating a single ‘frozen’ snapshot #ams is the case with the
current incarnation of Thaw, this effect would itwe the creation of two or
more such frames over time, and a subsequent dramafion from one frame to
the next involving vectors. In this case, vectomuld refer to a number of
‘lines’ drawn from each frequency/amplitude bin time first frame to the
corresponding bin in the next frame, thereby caydinear transformations
from one frozen state to the next. The rate at withese transformations occur,
as well as the number of frozen states which wdodd involved in the

transitions, would be specified by the user.

It is possible to achieve this effect in a manuatl dedious manner using
software such aSPEAR(Section 4.3.3). Furthermore, the implementatiébn o
this effect in a real-time environment could bdidifit and may not allow for a
predictable degree of user control. Nevertheldsss, proposed effect could

allow for the easy creation of a highly innovattype of drone.
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Appendix . C++ Code Examples

Corresponding pseudo code and notes for all metdedsribed here may be

found in Chapter 6. Comments in the following cede highlighted in bold.

Thaw Initialisation
From Thaw.cpp

Thaw::Thaw (audioMasterCallback audioMaster)
: AudioEffectX (audioMaster, kNumPrograms, kNumPar ams)

//get the sanple rate fromthe host

ISampleRate = audioMaster(&cEffect, audioMasterGet SampleRate, 0, 0, 0,
0);

ISampleRate = sampleRate;

size = ISampleRate;
buffer = new float[ISampleRate];

/llnitialise prograns/paraneters
programs = new ThawProgram[KNumPrograms];
if (programs)

setProgram (0);

setParameterAutomated(kCrossfade, 1.0f);
setParameterAutomated(kOnOff,0.0f);
setParameterAutomated(kLfoRate,0.0f);
setParameterAutomated(kLfoDepth,0.0f);
setParameterAutomated(kModBins,0.0f);
setParameterAutomated(kPitchshift,0.0f);
setParameterAutomated(kAmpMod,0.0f);
setParameterAutomated(kLfoShape, 0.0f);
setParameterAutomated(kSpecFiltCF, 0.0f);
setParameterAutomated(kSpecFiltGain, 0.5f);
setParameterAutomated(kSpecFiltQ, 0.0f);

/llnitialise I/0
setNuminputs (NUMINPUTS);
setNumOutputs (NUMOUTPUTS);

canProcessReplacing();
setUniquelD (‘cdal’);
resume ();

/lcreate nmyPvocs: objects based on the Apvoc class
myPvocl = 0;

myPvocl = new Apvoc();

myPvoc2 = 0;

myPvoc2 = new Apvoc();

/linitialise myPvocs
if (myPvocl == 0 || ({myPvocl->
init(ISampleRate, FFTLEN,BUFLEN,PVPP_STREAMING)))

delete myPvocl;
myPvocl = 0;
return;

if (myPvoc2 == 0 || ('/myPvoc2->
init(ISampleRate,FFTLEN,BUFLEN,PVPP_STREAMING)))

delete myPvoc2;

myPvoc2 = 0;
return;

-83 -



/linitialise freeze flags
freezing = false;
flagOnce = true;

/linitialise LFO

IfoRate = 0;
IfoDepth = 0;
IfoModBins = 0;
IfoFac = 0;
myLfo = 0;
myLfo = new LFO(ISampleRate);
if (myLfo == 0)
return;

myLfo->setRate(getParameter(kLfoRate));
setLfoShape(getParameter(kLfoShape));

Phase Vocoder Initialisation
From Apvoc.cpp

bool Apvoc::init(long sampleRate, long fftlen, long overlap, pvocmode mode)

inti;

if(inpv)
return false;

if(fitlen <= 0 || sampleRate <= 0)
return false;

if(overlap > fftlen/2 || overlap <= 0)
return false;

long windowsize = fftlen;
decfac = overlap;

inptr = outptr = 0;

nbins = (fftlen + 2) / 2;

pvoc_frametype outframetype = PVOC_AMP_FREQ);
pvoc_frametype inframetype = PVOC_AMP_FREQ;

try

/lcreate dynamic storage for analysis frames and I/ O buffers
frame = new float[fftlen + 2];
freezeFrame = new float[fftlen + 2];
morphFrame = new float[fftlen + 2];
inbuf = new float[decfac];
outbuf = new float[decfac];

/lcreate phase vocoders for analysis and resynthesis
inpv = new phasevocoder();
outpv = new phasevocoder();

if (inpv == NULL || outpv == NULL)
return false;

}
catch(...)

cleanup();
return false;

}

//try initialising the phase vocoder objects
if(linpv->init(sampleRate,fftlen,decfac,mode,FFTTY PE))

cleanup();
return false;

}
if(loutpv->init(sampleRate,fftlen,decfac,mode,FFTT YPE))
{

cleanup();
return false;

}

/linitialise the IO buffers and analysis franes
for (i = 0; i < decfac; i++)
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inbuf[i] = outbuffi] = 0.0f;
for (i=0; i< fftlen + 2; i++)
frame[i] = freezeFrame[i] = morphFrame][i] = 0.0f;
/linitialise the freezer flags
freezeOnce = false;
freezing = false;

return true;

The pr ocessRepl aci ng() Method
From Thaw.cpp

void Thaw::processReplacing (float** inputs, float* * outputs, VstInt32
sampleFrames)

float* in1 = inputs[O];
float* outl = outputs[O];
float* in2 = inputs[1];
float* out2 = outputs[1];

/lsets the freeze flags to send to the nyPvocs..
if (fOnOff == 1.0f)

{
freezing = true;
flagOnce = false;
}
else
{
freezing = false;
flagOnce = true;
}

setLfoShape(fLfoShape);
if(myPvocl && myPvoc2)
while(--sampleFrames >= 0)
myLfo->setRate(fLfoRate);

IfoRate = myLfo->tick();
IfoFac = IfoRate * fLfoDepth;

tl = *inl++;
t2 = *in2++;
*outl++ = ((myPvocl->tick(tl, freezing, IfoFac, fModBins,
fPitchshift,fAmpMod,fSpecFiltCF,fSpecFiltGain,fSpec FiltQ) * fCrossfade) + (11 *
(1 - fCrossfade)));
*out2++ = ((myPvoc2->tick(t2, freezing, IfoFac, fModBins,
fPitchshift,fAmpMod,fSpecFiltCF,fSpecFiltGain,fSpec FiltQ) * fCrossfade) + (t2 *
(1 - fCrossfade)));
}
else

while(--sampleFrames >= 0)

*outl++ = ((*inl++) * 0.1f);
*out2++ = ((*in2++) * 0.1f);

Phase Vocoder Incrementation and Freeze Effect
From Apvoc.cpp

float Apvoc::tick(float insamp, bool freezing, floa t IfoFac, float IfoModFac,
float pitchShift, float spectDeg, float specFiltCF, float specFiltGain, float
specFiltQ)
{

long a;

if (freezing)
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freezeOnce = true;

if (‘outbuf)
return 0.0f;

/lincrement the pointer to the next sanple in outbuf
float outval = outbufloutptr++];

if(outptr==decfac)

//generate an anal ysis frame of wi ndow using phase vocoder
a = inpv->generate_frame(inbuf,frame,decfac,PVOC_ AMP_FREQ);
inptr = outptr = 0;

if (freezing) /Il the freeze effect is switched on
if (freezeOnce) //snapshot frane not filled, do so now...

makeFreezeFrame(frame,freezeFrame,nbins);
freezeOnce = false;

/1 Sound transfornations to frozen frame are applied here:

transformTheFrame
(freezeFrame,morphFrame,lfoFac,lfoModFac,pitchShift ,spectDeg,specFiltCF,
specFiltGain,specFiltQ,nbins);

I/ resynt hesi se freezeFrane and send to out buf
a = outpv->process_frame
(morphFrame,outbuf,(pvoc_frametype)PVOC_AMP_FREQ);
}

else
{ _ _
//transformations to non-frozen franmes are applied here:
transformTheFrame
(frame,morphFrame,lfoFac,lfoModFac,pitchShift,spect Deg,

specFiltCF,specFiltGain,specFiltQ,nbins);
/I Resynt hesi se conti nuous frame, and send to out buf

a = outpv->process_frame
(morphFrame,outbuf,(pvoc_frametype)PVOC_AMP_FREQ);
}

inbuflinptr++] = insamp;
return outval;

Creating the Frozen Frame
From Cfunctions.c

void makeFreezeFrame(float *streamingFrame, float * freezeFrame, long nbins)
{

inta, al;

for (a =0, al = 0; a < nbins; a++, al += 2)

{

freezeFrame[al] = streamingFrame[al];
freezeFrame[al+1] = streamingFrame[al+1];
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The Sound Transformation Algorithm

From Cfunctions.c

void transformTheFrame(float *inFrame, float *outFr ame, float IfoFac, float
IfoModFac, float pitchShift, float spectDeg, float specFiltCF, float
specFiltGain, float specFiltQ, long nbins)
{
inta, al;
int shiftFac = (int)(pitchShift*170); /I manual pitchshift factor
int multFac = (int)((1-ffoModFac) * 100); // LFO nodul ation factor
int degFac = (int)((1-spectDeg) * 100); /' amp bi ns degradation factor
float halfspecFiltWidth = nbins*(1-specFiltQ)*0.5f ;
float specFiltFacLo = (specFiltCF*nbins) - halfspe cFiltWidth;
float specFiltFacHi = (specFiltCF*nbins) + halfspe cFiltwidth;

float specFiltFacGain = specFiltGain * 3;
for (a=0, al =0; a < nbins; a++, al += 2)

//anplitude nodifications
if (@l <5 * (rand()%(101 - degFac)))
outFrame[al] = 0;
else if (al > specFiltFacLo && al > specFiltFacHi )
outFrame[al] = inFrame[al] * specFiltFacGain;
else
outFrame[al] = inFrame[al];

//frequency nodifications:
if (@1 <5 * (rand()%(101 - multFac)))
outFrame[al+1] = inFrame[al+1] + IfoFac + shiftF ac;
else
outFrame[al+1] = inFrame[al+1] + shiftFac;

}
Random LFO Wave Shape
From LFO.cpp

(Excerpted from) void LFO::setWaveform(waveform_t index)
inti;
float place = 0.0f;
for(i=0;i<256;i++)
if (rand()%5 == 0)
place += ((rand()%2)-0.5)* 0.2f;
table[i] = place;
table[256] = 0.0f;
}

Logarithmic Scaling of LFO Rate and Spectral FilteaLF
From Thaw.cpp

(Excerpted from) void Thaw::setParameter (VstInt32 index, float valu e)
/lensures 1-logval (for scaling of fLfoRate and fspecFiltCF) is nonzero
double logval = value;
if (logval == 1)
logval -= 0.0001;

switch (index)

case kLfoRate: fLfoRate = (-log10(1-logval))*5;
break;

case kSpecFiltCF:  fSpecFiltCF = (-log10(1-logval ))*0.25;
break;
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Appendix Il. Excerpts from the Development Log

05-06-2006
- Working version of aDelay sample program.

04-07-2006

- Developed Apvoc class, similar in structure andtesnto equivalent classes in the CDP
plug-ins. The plan is this: Apvoc class containsthods including init to declare and
initialise in and out phasevocoder() objects. Areobcalled myPvocs is declared and
initialised in the AudioEffectX method of the Thabject, i.e. it is created as soon as the
plug-in is started.

- The main work, of course, will be done inside thecessReplacing method. Am currently
working on Apvoc::tick() method which will encapaté phasevocoder::generate_frame
and phasevocoder::process_frame methods. Not swvethwill work yet but this is how
Dobson’s spectral plug-ins work.

10-07-2006

- Bad stuff has been happening...Still facing the Jigkpblem, and I've done something that
makes MiniHost crash every time | try to run it.WlWepproach: | am going to try to use
Dobson's adapted CARL software routines insteatiefgeneric ones | downloaded which
do not appear to be suitable for streaming pvos.use

11-07-2006

- Finally, a working pvoc! Sorted out the Access ¥iadn Exception mentioned previously
by sorting out some dodgy pointers. Now have a wmgrlanalysis/resynthesis algorithm
although | haven't figured out how to do anythinteresting with it yet. Have defined 2
parameters for the VST, one to control the voluries other will now be used for
experimentation purposes...

22-07-2006

- The freezer works! Took the approach of storingrale analysis frame in a buffer and
spitting it out while the freeze effect is on.

- Got some correspondence from Richard Dobson ity tepiny email. Looks like there will
be no licensing problems with the CARL pvoc, thatikf He recommended | use the
FFTW libraries for speed, had a look at them, tweyquite daunting.

01-08-2006

- An LFO with controllable rate and depth has beeteddo the software. At the moment it
is modulating a specified proportion of the freguebins in the freeze frame. The effect is
quite cool but the code to select the proportiobing needs work

09-08-2006
- Hope to sort out some issues with the Modulatioth Amp deg factors - they are not very
linear at the moment.

15-08-2006

- Been trying to implement the GUI but with no luck.

- Realised it might be a good idea to allow the useapply the pvoc sound transformations
even when the effect is not 'On' - while this may make the plug-in as aesthetically static
as desired, it does offer a lot more flexibilitythviegard to functionality.

24-08-2006

- Code tidied up a great deal. #DEFINE headers pubiallow programmers to quickly
change pvoc parameters and recompile as desired.

- Awaiting more beta tester responses.

- Implemented some more tiny functionality changeseisponse to tester feedback - LFO
max rate is now 24Hz. LFO depth in random algorititae been increased.
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Appendix lI. Sample Beta Testing Reports

‘Beta testing’ refers to one of the latter stagésaftware testing whereby a
product in development is released to a small gafugsers outside of the core
development environment in an effort to uncovershuythough formal beta

testing standards and procedures exist, the resousnd expertise for
conducting such processes were limited at the tifrtesting. Nevertheless, the
importance of rigorous and structured testing fer purposes of improving the

final product on many levels was acknowledged.

Therefore, a small group of voluntary beta testecgived a copy of the Thaw
plug-in on 1f August 2006 and were asked to comment on the litgabi
functionality, aesthetics and reliability of theftsare, following a week-long
period of testing using various hosts and test mash In particular, the
volunteers were asked to perform testing in soméwhaisual scenarios,
including the use of different sample rates, mond stereo sound sources, the
use of multiple instances of the plug-in, autonratib the plug-in, and any other
action which would stretch the functionality of teeftware to its limits. The
beta testers’ responses were noted in a log. Thle tan the following page
summarises some of this feedback. A list of coiastand enhancements that

were implemented following the receipt of this feadk is then presented.

-89 -



Tester Machine Host Software Technical Issues Sample Comment

Ur

# Specifications on Usability &
Aesthetics
Tester | Windows 2000, Ableton Live v.4 | [No issues] “left it running for a
1 Pentium 1V, 512 Mb few hours, no
RAM problems there... on
occasion the pitch
_ _ canrise by a
Windows XP Ableton Live v.5

semitone when
frozen, this might be
some kind of weird

alias?”[1]
Tester | Windows XP, Tracktion, - Tracktion: graphical | “why stop LFO Rate
2 Pentium 1.8GHz, 1 | Max/MSP glitch from host- at 8Hz? Having more
Gb RAM, M-Audio assigned GUI than 20Hz would
sound card (functionality create cool ring mod
unaffected)?2] effect... no crashes”
- Audible glitches when| [4]
rapidly changing
wet/dry mix[3]
Tester | AMD 2GHz, 1 Gb Audiomulch [No issues] “well impressed with
3 RAM, Windows XP, it... | couldn’t get it
Delta 44 sound card to break... creating
some crazy drones!”
Tester | Intel Centrino FL Studio 6, - FL Studio: graphical | “a wet/dry mix
4 2.1GHz, 1 Gb RAM, | Bidule, glitches from host- would be useful, for
Windows XP (SP2), | energyXT, assigned GUI using this in Bidule”
Indigo sound card Usine (functionality [7]
unaffected)5]

- Excessive LFO speed
at 96kHz sample raig]

Notes:

[1] This perceived change in pitch is in fact the Itestl ‘freezing’ some
types of polyphonic sounds using the phase vocaeidiscussed in Section
8.1. It may be avoided by using a longer phase decwindow length than the
default 1024, at the expense of more CPU power.

[2] This graphical error caused the parameter dispiay3haw’s host-
assigned GUI to display incorrect values for aipaldr parameter, without
actually affecting the sounds produced by the phugh is hoped that this
problem will be rectified in a future version of aw, with or without the
development of a custom GUI for the software.

[3] Thaw's cross-fading function does not interpola&tween subsequent
extreme values, therefore sudden extreme changesheofDry/Wet mix
parameter can result in audible glitches. It i®$een that this problem may be

removed by introducing such interpolation.
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[4] In response to this tester’s request, the maxirhB@ rate was raised to
24Hz, thereby allowing rapid vibratos and sligimigrmodulation. A logarithmic
scaling function, which would allow the user toaieat finer control at low
frequencies, was also subsequently implementedi(Bei.4.5).

[5] This appears to be the same glitch reported ie [jt

[6] This tester uncovered this elusive bug by using gbftware with a
higher sample rate (96 kHz) than the default 44dk.kit was subsequently
discovered that, in the LFO, the sample rate wasl'ltoded’ at 44.1 kHz rather
than requesting the sample rate from the host, stsould have been. This had
the effect of making the LFO rate go twice as fstintended. This error was
duly rectified without difficulty.

[7] The Dry/Wet mix was introduced at an early stagedevelopment,

following this tester’s request.
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Appendix IV. Software Screenshots

Sample of Host-Assigned User Interfaces for Thaw

Presets  Quick

MiniHost

Il init
Dry/\Wet
Freeze OffOn
Pitch Shift
Spectral Degrad
LFO Modulation &%
LFOShERe N Bt
8.728178 % L
LFO h
| womssars [ 2842892 % s D.EP*HRH c @0
(2= Tiangle Spectral Filter €
Spectral Filter £

 Thaw_Stereo (VST plug-in)

Tracktion energyXT

-92-



Prototype Custom User Interface

‘"Thaw v.0.1 (c) cormac paly 2006

ffreeze 2
Dry Wet
on @
5 /
(Thaw i
Pitch Shift —  ——e—
Spectral
Legradation =@—— — - —  —
Low Frequency Oscillator Spectral Filter
Shape

Freq Gain width
e — = —
Factor ‘ ‘ ‘

A prototype design for a custom user interface Tdraw. The plug-in's

g £
|E|E|

parameters have been grouped into logical compatsria order to improve

usability. Slider ‘handles’ and parameter displages not included in this image.
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